peterchanjaon commited on
Commit
c9c07c6
1 Parent(s): f37915f
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -75.77 +/- 84.60
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a2a39924430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a2a399244c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a2a39924550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a2a399245e0>", "_build": "<function ActorCriticPolicy._build at 0x7a2a39924670>", "forward": "<function ActorCriticPolicy.forward at 0x7a2a39924700>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a2a39924790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a2a39924820>", "_predict": "<function ActorCriticPolicy._predict at 0x7a2a399248b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a2a39924940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a2a399249d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a2a39924a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a29dbcf6e40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 100352, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1728648207282355890, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAOZ+Nb7U8cs+kvsAvU95tb2HLss8lJoOOgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGyew/xDst2MAWyUTa4DjAF0lEdAXPViVjZtenV9lChoBkfAcM+9IPK+z2gHTQMBaAhHQF0McXWOIZZ1fZQoaAZHQEXFG7z06HVoB03oA2gIR0BdaYtpVS4wdX2UKGgGR0A4gd+G47RwaAdN6ANoCEdAXh4ccU/OdHV9lChoBkdASzAu5BkZrGgHS8poCEdAXjEXwb2lEnV9lChoBkfAVMwSBbwBo2gHS9hoCEdAXkSRdQfp2XV9lChoBkfAYvXzMA3kxWgHS5xoCEdAXlLkJa7mMnV9lChoBkfAXDg9aEBbOmgHS8BoCEdAXmShysCDEnV9lChoBkfAIKaaCtihFmgHS6loCEdAXnR1IRRMvnV9lChoBkfAQGgysS00FmgHS7toCEdAXwL++/QBxXV9lChoBkfAZcUGyon8bmgHS7poCEdAXxnkWAPNFHV9lChoBkfAWxLIU8FINGgHTRUBaAhHQF89WQOnVG11fZQoaAZHQEvmNtqHoHNoB0u+aAhHQF9OZPVNHpd1fZQoaAZHwEnzSzgMtshoB00aAWgIR0BfZ47Rv3rVdX2UKGgGR8BWXPACW/rTaAdL7GgIR0BffYbn5i3HdX2UKGgGR8BlQttQ9A5aaAdL+2gIR0Bfk/w/gR9PdX2UKGgGR8BCCMxwhnrZaAdNGAFoCEdAX60x20Re1XV9lChoBkfAa7aDXe3x4WgHS+doCEdAX8N66asp5XV9lChoBkfAZRPNUwSJ0mgHS5poCEdAYBXzwtrbg3V9lChoBkdAO5q86FM7EGgHS/xoCEdAYCGh9LHuJHV9lChoBkdAQ06PluFYdWgHS9loCEdAYCthnanJk3V9lChoBkfAWU2wdKdxyWgHTUMBaAhHQGA50VJtix51fZQoaAZHwFTdxS5y2hJoB02AAWgIR0BgSt6Z6UqydX2UKGgGR0BU2OzD4xk/aAdN6ANoCEdAYKbj6N2ki3V9lChoBkfAPcLMHKOktWgHTSMBaAhHQGC0tqxkd3l1fZQoaAZHQEJA3jMmnfloB00VAWgIR0BgwQOx0MgEdX2UKGgGR8Bk7TOLR8c/aAdNQAFoCEdAYM/K/VRUFXV9lChoBkfAaKhEQXhwVGgHTQYBaAhHQGDnLLQokRl1fZQoaAZHwFQHPci4axZoB009AWgIR0BhCsvZh8YydX2UKGgGR8BM+C8WbgCPaAdNggFoCEdAYVTq7iADrHV9lChoBkdAQLUHjZL7GmgHS81oCEdAYV4rZJ04i3V9lChoBkfAU3JgDzRQamgHTaIBaAhHQGFxM2vStvJ1fZQoaAZHQFs2UIsyzoloB03oA2gIR0Bhn+yJKraNdX2UKGgGR8BujAoLG7z1aAdN7QFoCEdAYeJKvmoze3V9lChoBkfAQyWSpzcRDmgHTSIBaAhHQGHv25hBqsV1fZQoaAZHwF0kbe/Ho5hoB02lAWgIR0BiA5eb/ffodX2UKGgGR8BfyBrrPdEcaAdNfQFoCEdAYhT7xd6cAnV9lChoBkdAWKf5KvmozmgHTegDaAhHQGJvi0OVgQZ1fZQoaAZHQDblDw6QvHtoB02WAWgIR0BihoTj/+85dX2UKGgGR0BQyO4b0e2eaAdN6ANoCEdAYsTBIFvAGnV9lChoBkfAYxWi7kGRm2gHTZEBaAhHQGLXHZTQ3P11fZQoaAZHQDrstK7I1cdoB0v1aAhHQGMOhGQSzxB1fZQoaAZHwGdwk6tDD0loB00ZAWgIR0BjG4ydnTRZdX2UKGgGR8BHdfR3NcGDaAdNlQFoCEdAYy3iBoVVP3V9lChoBkdAajSbx3FDOWgHTXECaAhHQGNKkU0vXbx1fZQoaAZHwAmblijL0SRoB00OAWgIR0BjVvbZezD5dX2UKGgGR8BnPv20zCUHaAdL7GgIR0BjYXpOerdWdX2UKGgGR0BZTN9x6v7naAdN6ANoCEdAY7tStvGZNXV9lChoBkfAXnHVXmvGImgHTYUBaAhHQGPMtdZ7ojh1fZQoaAZHwB8SH/LkjopoB01WAWgIR0Bj3Ejqv/zbdX2UKGgGR8BRuwz544ZNaAdNbgFoCEdAY+yam4y44XV9lChoBkdAUgpSGahHsmgHTegDaAhHQGRbXgLqlgt1fZQoaAZHwEefP69CeEtoB00VAWgIR0BkaC6FuejEdX2UKGgGR8BPrWtuDSPVaAdNLwFoCEdAZHXhZyMkyHV9lChoBkfATE/oouwos2gHTTMBaAhHQGSD1Ed/8VJ1fZQoaAZHQFrN4N7SiM5oB03oA2gIR0Bk3re9Ba9sdX2UKGgGR0Bo/9VcUucuaAdN3QFoCEdAZPSGorFwUHV9lChoBkfAK4lVDKHO8mgHTQ4BaAhHQGUAkleF+NN1fZQoaAZHwBbmeUY8+zNoB01tAWgIR0BlEWe4Cp3pdX2UKGgGR0BSsmXb/Ot5aAdN6ANoCEdAZWznh86V+3V9lChoBkdAXUeCdz4k/2gHTegDaAhHQGWdd6Tnq3V1fZQoaAZHQFr/2aUiY9hoB03oA2gIR0BmI3lyR0U5dX2UKGgGR8Azqgc94eLfaAdNVwFoCEdAZjswevIOpnV9lChoBkfAXa6NkvsZ52gHTR8CaAhHQGZUI2wV0tB1fZQoaAZHwCAyCjDbah9oB00LAWgIR0BmYB8hLXcydX2UKGgGR8BZyxpUPxx2aAdNZwFoCEdAZpz1OCXhO3V9lChoBkfAYlMRAbADaGgHTfUBaAhHQGazpY1YQrd1fZQoaAZHwDI50DEFW4poB00fAmgIR0Bmy8y8BdUsdX2UKGgGR8BEIOmBOHnEaAdNBwFoCEdAZte2VE/jbXV9lChoBkfADKOd5IH1OGgHTTABaAhHQGbm3vphWo51fZQoaAZHwFbXQpF1B+poB03CAWgIR0BnLBeXzDoAdX2UKGgGR8BeXskIHC40aAdNagFoCEdAZz1Ip6QeWHV9lChoBkdAZleawUxmCmgHTegDaAhHQGdscDbJwKl1fZQoaAZHQGcH+m3vx6RoB02MAmgIR0Bny2HtWuHOdX2UKGgGR8BlhMb3oLXuaAdN1gJoCEdAZ+wjHGS6lXV9lChoBkdAXrMQpWmxdWgHTegDaAhHQGgaH3L3bmF1fZQoaAZHwEiq7eVLSNRoB00TAWgIR0BoU8pmVZ9vdX2UKGgGR8Ax0eCTUy57aAdNWQFoCEdAaGPdSEUTMHV9lChoBkdAQFyiItUXHmgHTegDaAhHQGiQ8a4tpVV1fZQoaAZHQFQTmOEM9bJoB03oA2gIR0Bo7yJj2BatdX2UKGgGR8BXQgr1/Ue/aAdNEAJoCEdAaQupG4I8hnV9lChoBkdAbOZDye7L+2gHTeECaAhHQGk4BePaL4x1fZQoaAZHQFPAolD4QBhoB03oA2gIR0BpnGw3YL9ddX2UKGgGR0BsUKN4qwyJaAdNDwJoCEdAabQryUcGT3V9lChoBkc/42mFajesP2gHTegDaAhHQGoOi3G4qgB1fZQoaAZHwAyKtHQQcxVoB03oA2gIR0BqO8cn3L3cdX2UKGgGR0Bs4xVAAyVOaAdN8wFoCEdAalJ850bLlnV9lChoBkdAPFztCzC1qmgHTegDaAhHQGqy8EV32VV1fZQoaAZHQGZNPjfek59oB02sAmgIR0Bq3JyCFsYVdX2UKGgGR0BrRIZ62OQyaAdNKwJoCEdAavtgb6xgRnV9lChoBkdAV6Lvrnkkr2gHTegDaAhHQGtV5vDP4VR1fZQoaAZHQG2J4+B6KLtoB018AmgIR0BrcnEn9ehPdX2UKGgGR0BwAolPacqfaAdNvQFoCEdAa4Z7Ikqto3V9lChoBkfARq0RDkU9IWgHTcoBaAhHQGvHar/82rJ1fZQoaAZHQGo6HgHeJpFoB00CAmgIR0Br3sc4o7V8dX2UKGgGR8BSEOqrBCUpaAdNsgFoCEdAa/KCEpRXOnV9lChoBkfAU/jgAIY3vWgHTTMCaAhHQGwML9ETg2t1fZQoaAZHQGfVNIK+i8FoB02XA2gIR0BsdDuYx+KCdX2UKGgGR8AW5tygf2boaAdNDwFoCEdAbIMBtDUmUnV9lChoBkdAYEyfEGZ/kWgHTbYCaAhHQGyiv+n62v11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 490, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ecfe575e3d29c5152d5c2bd0a7ba7f2d5cd30e9b2ed80be5456620b2e95b7ac
3
+ size 147401
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7a2a39924430>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a2a399244c0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a2a39924550>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a2a399245e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7a2a39924670>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7a2a39924700>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a2a39924790>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a2a39924820>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7a2a399248b0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a2a39924940>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a2a399249d0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a2a39924a60>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7a29dbcf6e40>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 100352,
25
+ "_total_timesteps": 100000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1728648207282355890,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAOZ+Nb7U8cs+kvsAvU95tb2HLss8lJoOOgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.0035199999999999676,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGyew/xDst2MAWyUTa4DjAF0lEdAXPViVjZtenV9lChoBkfAcM+9IPK+z2gHTQMBaAhHQF0McXWOIZZ1fZQoaAZHQEXFG7z06HVoB03oA2gIR0BdaYtpVS4wdX2UKGgGR0A4gd+G47RwaAdN6ANoCEdAXh4ccU/OdHV9lChoBkdASzAu5BkZrGgHS8poCEdAXjEXwb2lEnV9lChoBkfAVMwSBbwBo2gHS9hoCEdAXkSRdQfp2XV9lChoBkfAYvXzMA3kxWgHS5xoCEdAXlLkJa7mMnV9lChoBkfAXDg9aEBbOmgHS8BoCEdAXmShysCDEnV9lChoBkfAIKaaCtihFmgHS6loCEdAXnR1IRRMvnV9lChoBkfAQGgysS00FmgHS7toCEdAXwL++/QBxXV9lChoBkfAZcUGyon8bmgHS7poCEdAXxnkWAPNFHV9lChoBkfAWxLIU8FINGgHTRUBaAhHQF89WQOnVG11fZQoaAZHQEvmNtqHoHNoB0u+aAhHQF9OZPVNHpd1fZQoaAZHwEnzSzgMtshoB00aAWgIR0BfZ47Rv3rVdX2UKGgGR8BWXPACW/rTaAdL7GgIR0BffYbn5i3HdX2UKGgGR8BlQttQ9A5aaAdL+2gIR0Bfk/w/gR9PdX2UKGgGR8BCCMxwhnrZaAdNGAFoCEdAX60x20Re1XV9lChoBkfAa7aDXe3x4WgHS+doCEdAX8N66asp5XV9lChoBkfAZRPNUwSJ0mgHS5poCEdAYBXzwtrbg3V9lChoBkdAO5q86FM7EGgHS/xoCEdAYCGh9LHuJHV9lChoBkdAQ06PluFYdWgHS9loCEdAYCthnanJk3V9lChoBkfAWU2wdKdxyWgHTUMBaAhHQGA50VJtix51fZQoaAZHwFTdxS5y2hJoB02AAWgIR0BgSt6Z6UqydX2UKGgGR0BU2OzD4xk/aAdN6ANoCEdAYKbj6N2ki3V9lChoBkfAPcLMHKOktWgHTSMBaAhHQGC0tqxkd3l1fZQoaAZHQEJA3jMmnfloB00VAWgIR0BgwQOx0MgEdX2UKGgGR8Bk7TOLR8c/aAdNQAFoCEdAYM/K/VRUFXV9lChoBkfAaKhEQXhwVGgHTQYBaAhHQGDnLLQokRl1fZQoaAZHwFQHPci4axZoB009AWgIR0BhCsvZh8YydX2UKGgGR8BM+C8WbgCPaAdNggFoCEdAYVTq7iADrHV9lChoBkdAQLUHjZL7GmgHS81oCEdAYV4rZJ04i3V9lChoBkfAU3JgDzRQamgHTaIBaAhHQGFxM2vStvJ1fZQoaAZHQFs2UIsyzoloB03oA2gIR0Bhn+yJKraNdX2UKGgGR8BujAoLG7z1aAdN7QFoCEdAYeJKvmoze3V9lChoBkfAQyWSpzcRDmgHTSIBaAhHQGHv25hBqsV1fZQoaAZHwF0kbe/Ho5hoB02lAWgIR0BiA5eb/ffodX2UKGgGR8BfyBrrPdEcaAdNfQFoCEdAYhT7xd6cAnV9lChoBkdAWKf5KvmozmgHTegDaAhHQGJvi0OVgQZ1fZQoaAZHQDblDw6QvHtoB02WAWgIR0BihoTj/+85dX2UKGgGR0BQyO4b0e2eaAdN6ANoCEdAYsTBIFvAGnV9lChoBkfAYxWi7kGRm2gHTZEBaAhHQGLXHZTQ3P11fZQoaAZHQDrstK7I1cdoB0v1aAhHQGMOhGQSzxB1fZQoaAZHwGdwk6tDD0loB00ZAWgIR0BjG4ydnTRZdX2UKGgGR8BHdfR3NcGDaAdNlQFoCEdAYy3iBoVVP3V9lChoBkdAajSbx3FDOWgHTXECaAhHQGNKkU0vXbx1fZQoaAZHwAmblijL0SRoB00OAWgIR0BjVvbZezD5dX2UKGgGR8BnPv20zCUHaAdL7GgIR0BjYXpOerdWdX2UKGgGR0BZTN9x6v7naAdN6ANoCEdAY7tStvGZNXV9lChoBkfAXnHVXmvGImgHTYUBaAhHQGPMtdZ7ojh1fZQoaAZHwB8SH/LkjopoB01WAWgIR0Bj3Ejqv/zbdX2UKGgGR8BRuwz544ZNaAdNbgFoCEdAY+yam4y44XV9lChoBkdAUgpSGahHsmgHTegDaAhHQGRbXgLqlgt1fZQoaAZHwEefP69CeEtoB00VAWgIR0BkaC6FuejEdX2UKGgGR8BPrWtuDSPVaAdNLwFoCEdAZHXhZyMkyHV9lChoBkfATE/oouwos2gHTTMBaAhHQGSD1Ed/8VJ1fZQoaAZHQFrN4N7SiM5oB03oA2gIR0Bk3re9Ba9sdX2UKGgGR0Bo/9VcUucuaAdN3QFoCEdAZPSGorFwUHV9lChoBkfAK4lVDKHO8mgHTQ4BaAhHQGUAkleF+NN1fZQoaAZHwBbmeUY8+zNoB01tAWgIR0BlEWe4Cp3pdX2UKGgGR0BSsmXb/Ot5aAdN6ANoCEdAZWznh86V+3V9lChoBkdAXUeCdz4k/2gHTegDaAhHQGWdd6Tnq3V1fZQoaAZHQFr/2aUiY9hoB03oA2gIR0BmI3lyR0U5dX2UKGgGR8Azqgc94eLfaAdNVwFoCEdAZjswevIOpnV9lChoBkfAXa6NkvsZ52gHTR8CaAhHQGZUI2wV0tB1fZQoaAZHwCAyCjDbah9oB00LAWgIR0BmYB8hLXcydX2UKGgGR8BZyxpUPxx2aAdNZwFoCEdAZpz1OCXhO3V9lChoBkfAYlMRAbADaGgHTfUBaAhHQGazpY1YQrd1fZQoaAZHwDI50DEFW4poB00fAmgIR0Bmy8y8BdUsdX2UKGgGR8BEIOmBOHnEaAdNBwFoCEdAZte2VE/jbXV9lChoBkfADKOd5IH1OGgHTTABaAhHQGbm3vphWo51fZQoaAZHwFbXQpF1B+poB03CAWgIR0BnLBeXzDoAdX2UKGgGR8BeXskIHC40aAdNagFoCEdAZz1Ip6QeWHV9lChoBkdAZleawUxmCmgHTegDaAhHQGdscDbJwKl1fZQoaAZHQGcH+m3vx6RoB02MAmgIR0Bny2HtWuHOdX2UKGgGR8BlhMb3oLXuaAdN1gJoCEdAZ+wjHGS6lXV9lChoBkdAXrMQpWmxdWgHTegDaAhHQGgaH3L3bmF1fZQoaAZHwEiq7eVLSNRoB00TAWgIR0BoU8pmVZ9vdX2UKGgGR8Ax0eCTUy57aAdNWQFoCEdAaGPdSEUTMHV9lChoBkdAQFyiItUXHmgHTegDaAhHQGiQ8a4tpVV1fZQoaAZHQFQTmOEM9bJoB03oA2gIR0Bo7yJj2BatdX2UKGgGR8BXQgr1/Ue/aAdNEAJoCEdAaQupG4I8hnV9lChoBkdAbOZDye7L+2gHTeECaAhHQGk4BePaL4x1fZQoaAZHQFPAolD4QBhoB03oA2gIR0BpnGw3YL9ddX2UKGgGR0BsUKN4qwyJaAdNDwJoCEdAabQryUcGT3V9lChoBkc/42mFajesP2gHTegDaAhHQGoOi3G4qgB1fZQoaAZHwAyKtHQQcxVoB03oA2gIR0BqO8cn3L3cdX2UKGgGR0Bs4xVAAyVOaAdN8wFoCEdAalJ850bLlnV9lChoBkdAPFztCzC1qmgHTegDaAhHQGqy8EV32VV1fZQoaAZHQGZNPjfek59oB02sAmgIR0Bq3JyCFsYVdX2UKGgGR0BrRIZ62OQyaAdNKwJoCEdAavtgb6xgRnV9lChoBkdAV6Lvrnkkr2gHTegDaAhHQGtV5vDP4VR1fZQoaAZHQG2J4+B6KLtoB018AmgIR0BrcnEn9ehPdX2UKGgGR0BwAolPacqfaAdNvQFoCEdAa4Z7Ikqto3V9lChoBkfARq0RDkU9IWgHTcoBaAhHQGvHar/82rJ1fZQoaAZHQGo6HgHeJpFoB00CAmgIR0Br3sc4o7V8dX2UKGgGR8BSEOqrBCUpaAdNsgFoCEdAa/KCEpRXOnV9lChoBkfAU/jgAIY3vWgHTTMCaAhHQGwML9ETg2t1fZQoaAZHQGfVNIK+i8FoB02XA2gIR0BsdDuYx+KCdX2UKGgGR8AW5tygf2boaAdNDwFoCEdAbIMBtDUmUnV9lChoBkdAYEyfEGZ/kWgHTbYCaAhHQGyiv+n62v11ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 490,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 1,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7cf18d43e80caccbaaaf1c624df6db80e5f7924969e000e97dc7e0a59db1d8a
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9489bebb4140cfd3700bd5f49519743f343009556cefffeaee2bb8f8799dd860
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.4.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (162 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -75.77259169999999, "std_reward": 84.59764748375109, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-10-11T12:10:58.068426"}