File size: 1,982 Bytes
8f08819 db4386c 8f08819 db4386c 8f08819 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
---
language:
- fa
- multilingual
thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg
tags:
- query-paraphrasing
- mt5
- persian
- farsi
license: cc-by-nc-sa-4.0
datasets:
- parsinlu
- qqp
metrics:
- accuracy
---
# Detection of Paraphrased Queries (تشخصیص سوالات هممعنی)
This is a model for detection of paraphrased queries.
Here is an example of how you can run this model:
```python
from transformers import MT5Config, MT5ForConditionalGeneration, MT5Tokenizer
model_name = "persiannlp/mt5-base-parsinlu-qqp-query-paraphrasing"
tokenizer = MT5Tokenizer.from_pretrained(model_name)
model = MT5ForConditionalGeneration.from_pretrained(model_name)
def run_model(q1, q2, **generator_args):
input_ids = tokenizer.encode(f"{q1}<sep>{q2}", return_tensors="pt")
res = model.generate(input_ids, **generator_args)
output = tokenizer.batch_decode(res, skip_special_tokens=True)
print(output)
return output
run_model("چه چیزی باعث پوکی استخوان می شود؟", "چه چیزی باعث مقاومت استخوان در برابر ضربه می شود؟")
run_model("من دارم به این فکر میکنم چرا ساعت هفت نمیشه؟", "چرا من ساده فکر میکردم به عشقت پابندی؟")
run_model("دعای کمیل در چه روزهایی خوانده می شود؟", "دعای جوشن کبیر در چه شبی خوانده می شود؟")
run_model("دعای کمیل در چه روزهایی خوانده می شود؟", "دعای جوشن کبیر در چه شبی خوانده می شود؟")
run_model("شناسنامه در چه سالی وارد ایران شد؟", "سیب زمینی در چه سالی وارد ایران شد؟")
run_model("سیب زمینی چه زمانی وارد ایران شد؟", "سیب زمینی در چه سالی وارد ایران شد؟")
```
For more details, visit this page: https://github.com/persiannlp/parsinlu/
|