updated
Browse files- README.md +32 -0
- convert_t5_checkpoint_to_flax.py +144 -0
README.md
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- fr
|
5 |
+
- ro
|
6 |
+
- de
|
7 |
+
datasets:
|
8 |
+
- c4
|
9 |
+
tags:
|
10 |
+
- summarization
|
11 |
+
- translation
|
12 |
+
|
13 |
+
license: apache-2.0
|
14 |
+
---
|
15 |
+
|
16 |
+
## Test T5 small conversion
|
17 |
+
This is a test repo for the conversion of T5X to HuggingFace Flax.
|
18 |
+
|
19 |
+
The current model is first converted from MTF to T5X using the conversion script included in the T5X library:
|
20 |
+
|
21 |
+
```bash
|
22 |
+
python3 -m t5x.scripts.convert_tf_checkpoint --gin_file=t5x/examples/t5/t5_1_0/small.gin --gin.convert_checkpoint.model=%MODEL --gin.convert_checkpoint.tf_checkpoint_path=\"gs://t5-data/pretrained_models/small/model.ckpt-1000000\" --gin.convert_checkpoint.output_dir=\"/tmp/t5x_checkpoints/t5_small\" --logtostderr
|
23 |
+
```
|
24 |
+
|
25 |
+
After creating the T5X model, the model is converted to Huggingface Flax by a modified version of the script from @stefan-it (https://gist.githubusercontent.com/stefan-it/30e4998ef159f33696e377a46f699d9f/raw/c19da5d067dc9d31d0b8115a79e8626186e11daa/convert_t5x_checkpoint_to_flax.py). The modified version is included in this repo. The modification is basically that the wi_0 and wi_1 layers are combined into wi. This might be a difference between t5_1_0 and t5_1_1
|
26 |
+
|
27 |
+
```bash
|
28 |
+
python3 convert_t5_checkpoint_to_flax.py --t5x_checkpoint_path /tmp/t5x_checkpoints/t5_small/checkpoint_1000000/ --flax_dump_folder_path /tmp/flax_dump_folder/ --config_name t5-small
|
29 |
+
```
|
30 |
+
|
31 |
+
|
32 |
+
|
convert_t5_checkpoint_to_flax.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
|
3 |
+
from t5x import checkpoints
|
4 |
+
from transformers import T5Config, FlaxT5Model
|
5 |
+
|
6 |
+
|
7 |
+
def convert_t5x_checkpoint_to_flax(t5x_checkpoint_path, config_name, flax_dump_folder_path):
|
8 |
+
config = T5Config.from_pretrained(config_name)
|
9 |
+
flax_model = FlaxT5Model(config=config)
|
10 |
+
t5x_model = checkpoints.load_t5x_checkpoint(t5x_checkpoint_path)
|
11 |
+
|
12 |
+
|
13 |
+
#breakpoint()
|
14 |
+
# Encoder
|
15 |
+
for layer_index in range(config.num_layers):
|
16 |
+
layer_name = f"layers_{str(layer_index)}"
|
17 |
+
|
18 |
+
# Self-Attention
|
19 |
+
t5x_attention_key = t5x_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"]
|
20 |
+
t5x_attention_out = t5x_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"]
|
21 |
+
t5x_attention_query = t5x_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"]
|
22 |
+
t5x_attention_value = t5x_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"]
|
23 |
+
|
24 |
+
## Layer Normalization
|
25 |
+
t5x_attention_layer_norm = t5x_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"]
|
26 |
+
|
27 |
+
# MLP
|
28 |
+
#t5x_mlp_wi_0 = t5x_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"]
|
29 |
+
#t5x_mlp_wi_1 = t5x_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"]
|
30 |
+
t5x_mlp_wi = t5x_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"]
|
31 |
+
t5x_mlp_wo = t5x_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"]
|
32 |
+
|
33 |
+
## Layer Normalization
|
34 |
+
t5x_mlp_layer_norm = t5x_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"]
|
35 |
+
|
36 |
+
# Assigning
|
37 |
+
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["k"]["kernel"] = t5x_attention_key
|
38 |
+
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["o"]["kernel"] = t5x_attention_out
|
39 |
+
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["q"]["kernel"] = t5x_attention_query
|
40 |
+
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["v"]["kernel"] = t5x_attention_value
|
41 |
+
|
42 |
+
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["0"]["layer_norm"]["weight"] = t5x_attention_layer_norm
|
43 |
+
|
44 |
+
#flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["1"]["DenseReluDense"]["wi_0"]["kernel"] = t5x_mlp_wi_0
|
45 |
+
#flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["1"]["DenseReluDense"]["wi_1"]["kernel"] = t5x_mlp_wi_1
|
46 |
+
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["1"]["DenseReluDense"]["wi"]["kernel"] = t5x_mlp_wi
|
47 |
+
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["1"]["DenseReluDense"]["wo"]["kernel"] = t5x_mlp_wo
|
48 |
+
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["1"]["layer_norm"]["weight"] = t5x_mlp_layer_norm
|
49 |
+
|
50 |
+
t5x_encoder_norm = t5x_model["target"]["encoder"]["encoder_norm"]["scale"]
|
51 |
+
|
52 |
+
# Only for layer 0:
|
53 |
+
t5x_encoder_rel_embedding = t5x_model["target"]["encoder"]["relpos_bias"]["rel_embedding"]
|
54 |
+
x, y = t5x_encoder_rel_embedding.shape
|
55 |
+
|
56 |
+
# Assigning
|
57 |
+
flax_model.params["encoder"]["block"]["0"]["layer"]["0"]["SelfAttention"]["relative_attention_bias"]["embedding"] = t5x_encoder_rel_embedding.reshape(y, x)
|
58 |
+
flax_model.params["encoder"]["final_layer_norm"]["weight"] = t5x_encoder_norm
|
59 |
+
|
60 |
+
# Decoder
|
61 |
+
for layer_index in range(config.num_layers):
|
62 |
+
layer_name = f"layers_{str(layer_index)}"
|
63 |
+
|
64 |
+
# Self-Attention
|
65 |
+
t5x_attention_key = t5x_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"]
|
66 |
+
t5x_attention_out = t5x_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"]
|
67 |
+
t5x_attention_query = t5x_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"]
|
68 |
+
t5x_attention_value = t5x_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"]
|
69 |
+
|
70 |
+
## Layer Normalization
|
71 |
+
t5x_pre_attention_layer_norm = t5x_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"]["scale"]
|
72 |
+
|
73 |
+
# Encoder-Decoder-Attention
|
74 |
+
t5x_enc_dec_attention_key = t5x_model["target"]["decoder"][layer_name]["encoder_decoder_attention"]["key"]["kernel"]
|
75 |
+
t5x_enc_dec_attention_out = t5x_model["target"]["decoder"][layer_name]["encoder_decoder_attention"]["out"]["kernel"]
|
76 |
+
t5x_enc_dec_attention_query = t5x_model["target"]["decoder"][layer_name]["encoder_decoder_attention"]["query"]["kernel"]
|
77 |
+
t5x_enc_dec_attention_value = t5x_model["target"]["decoder"][layer_name]["encoder_decoder_attention"]["value"]["kernel"]
|
78 |
+
|
79 |
+
## Layer Normalization
|
80 |
+
t5x_cross_layer_norm = t5x_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"]
|
81 |
+
|
82 |
+
# MLP
|
83 |
+
#t5x_mlp_wi_0 = t5x_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"]
|
84 |
+
#t5x_mlp_wi_1 = t5x_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"]
|
85 |
+
t5x_mlp_wi = t5x_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"]
|
86 |
+
t5x_mlp_wo = t5x_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"]
|
87 |
+
|
88 |
+
## Layer Normalization
|
89 |
+
tx5_mlp_layer_norm = t5x_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"]
|
90 |
+
|
91 |
+
#Assigning
|
92 |
+
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["k"]["kernel"] = t5x_attention_key
|
93 |
+
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["o"]["kernel"] = t5x_attention_out
|
94 |
+
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["q"]["kernel"] = t5x_attention_query
|
95 |
+
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["v"]["kernel"] = t5x_attention_value
|
96 |
+
|
97 |
+
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["0"]["layer_norm"]["weight"] = t5x_pre_attention_layer_norm
|
98 |
+
|
99 |
+
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["1"]["EncDecAttention"]["k"]["kernel"] = t5x_enc_dec_attention_key
|
100 |
+
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["1"]["EncDecAttention"]["o"]["kernel"] = t5x_enc_dec_attention_out
|
101 |
+
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["1"]["EncDecAttention"]["q"]["kernel"] = t5x_enc_dec_attention_query
|
102 |
+
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["1"]["EncDecAttention"]["v"]["kernel"] = t5x_enc_dec_attention_value
|
103 |
+
|
104 |
+
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["1"]["layer_norm"]["weight"] = t5x_cross_layer_norm
|
105 |
+
|
106 |
+
#flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["2"]["DenseReluDense"]["wi_0"]["kernel"] = t5x_mlp_wi_0
|
107 |
+
#flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["2"]["DenseReluDense"]["wi_1"]["kernel"] = t5x_mlp_wi_1
|
108 |
+
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["2"]["DenseReluDense"]["wi"]["kernel"] = t5x_mlp_wi
|
109 |
+
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["2"]["DenseReluDense"]["wo"]["kernel"] = t5x_mlp_wo
|
110 |
+
|
111 |
+
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["2"]["layer_norm"]["weight"] = tx5_mlp_layer_norm
|
112 |
+
|
113 |
+
# Decoder Normalization
|
114 |
+
tx5_decoder_norm = t5x_model["target"]["decoder"]["decoder_norm"]["scale"]
|
115 |
+
flax_model.params["decoder"]["final_layer_norm"]["weight"] = tx5_decoder_norm
|
116 |
+
|
117 |
+
# Only for layer 0:
|
118 |
+
t5x_decoder_rel_embedding = t5x_model["target"]["decoder"]["relpos_bias"]["rel_embedding"]
|
119 |
+
x, y = t5x_decoder_rel_embedding.shape
|
120 |
+
|
121 |
+
flax_model.params["decoder"]["block"]["0"]["layer"]["0"]["SelfAttention"]["relative_attention_bias"] = t5x_decoder_rel_embedding.reshape(y, x)
|
122 |
+
|
123 |
+
# Token Embeddings
|
124 |
+
tx5_token_embeddings = t5x_model["target"]["token_embedder"]["embedding"]
|
125 |
+
flax_model.params["shared"]["embedding"] = tx5_token_embeddings
|
126 |
+
|
127 |
+
flax_model.save_pretrained(flax_dump_folder_path)
|
128 |
+
|
129 |
+
|
130 |
+
if __name__ == "__main__":
|
131 |
+
parser = argparse.ArgumentParser()
|
132 |
+
# Required parameters
|
133 |
+
parser.add_argument(
|
134 |
+
"--t5x_checkpoint_path", default=None, type=str, required=True, help="Path the TX5 checkpoint."
|
135 |
+
)
|
136 |
+
parser.add_argument(
|
137 |
+
"--config_name", default=None, type=str, required=True, help="Config name of T5 model."
|
138 |
+
)
|
139 |
+
parser.add_argument(
|
140 |
+
"--flax_dump_folder_path", default=None, type=str, required=True, help="Path to the output FLAX model."
|
141 |
+
)
|
142 |
+
args = parser.parse_args()
|
143 |
+
convert_t5x_checkpoint_to_flax(args.t5x_checkpoint_path, args.config_name, args.flax_dump_folder_path)
|
144 |
+
|