File size: 1,752 Bytes
ba3500f 86c8c8e ba3500f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
# /home/perk/mymodel/sentencefix/tasks.py
import functools
import seqio
import tensorflow_datasets as tfds
from t5.evaluation import metrics
from t5.data import preprocessors
import t5
import tensorflow.compat.v1 as tf
tsv_path = {
"train": "gs://nb-t5x/corpus/train/train.tsv",
"validation": "gs://nb-t5x/corpus/eval/eval.tsv",
"test": "gs://nb-t5x/corpus/test/test.tsv"
}
vocabulary = t5.data.ByteVocabulary()
DEFAULT_OUTPUT_FEATURES = {
"inputs":
seqio.Feature(
vocabulary=vocabulary, add_eos=True),
"targets":
seqio.Feature(
vocabulary=vocabulary, add_eos=True)
}
def sentencefix_preprocessor(ds):
def normalize_text(text):
"""Lowercase and remove quotes from a TensorFlow string."""
text = tf.strings.regex_replace(text,"'(.*)'", r"\1")
return text
def to_inputs_and_targets(ex):
"""Map {"source": ..., "source": ...}->{"target": ..., "target": ...}."""
return {
"inputs":
tf.strings.join(
[normalize_text(ex["source"])]),
"targets":
tf.strings.join(
[normalize_text(ex["target"])]),
}
return ds.map(to_inputs_and_targets,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
seqio.TaskRegistry.add(
"sentencefix",
source=seqio.TextLineDataSource(
split_to_filepattern=tsv_path,
#num_input_examples=num_nq_examples
),
preprocessors=[
functools.partial(
t5.data.preprocessors.parse_tsv,
field_names=["source", "target"]),
sentencefix_preprocessor,
seqio.preprocessors.tokenize_and_append_eos,
],
#metric_fns=[metrics.bleu],
output_features=DEFAULT_OUTPUT_FEATURES,
)
|