|
""" Nvidia NovoGrad Optimizer. |
|
Original impl by Nvidia from Jasper example: |
|
- https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/SpeechRecognition/Jasper |
|
Paper: `Stochastic Gradient Methods with Layer-wise Adaptive Moments for Training of Deep Networks` |
|
- https://arxiv.org/abs/1905.11286 |
|
""" |
|
|
|
import torch |
|
from torch.optim.optimizer import Optimizer |
|
import math |
|
|
|
|
|
class NvNovoGrad(Optimizer): |
|
""" |
|
Implements Novograd algorithm. |
|
|
|
Args: |
|
params (iterable): iterable of parameters to optimize or dicts defining |
|
parameter groups |
|
lr (float, optional): learning rate (default: 1e-3) |
|
betas (Tuple[float, float], optional): coefficients used for computing |
|
running averages of gradient and its square (default: (0.95, 0.98)) |
|
eps (float, optional): term added to the denominator to improve |
|
numerical stability (default: 1e-8) |
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
|
grad_averaging: gradient averaging |
|
amsgrad (boolean, optional): whether to use the AMSGrad variant of this |
|
algorithm from the paper `On the Convergence of Adam and Beyond`_ |
|
(default: False) |
|
""" |
|
|
|
def __init__(self, params, lr=1e-3, betas=(0.95, 0.98), eps=1e-8, |
|
weight_decay=0, grad_averaging=False, amsgrad=False): |
|
if not 0.0 <= lr: |
|
raise ValueError("Invalid learning rate: {}".format(lr)) |
|
if not 0.0 <= eps: |
|
raise ValueError("Invalid epsilon value: {}".format(eps)) |
|
if not 0.0 <= betas[0] < 1.0: |
|
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) |
|
if not 0.0 <= betas[1] < 1.0: |
|
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) |
|
defaults = dict(lr=lr, betas=betas, eps=eps, |
|
weight_decay=weight_decay, |
|
grad_averaging=grad_averaging, |
|
amsgrad=amsgrad) |
|
|
|
super(NvNovoGrad, self).__init__(params, defaults) |
|
|
|
def __setstate__(self, state): |
|
super(NvNovoGrad, self).__setstate__(state) |
|
for group in self.param_groups: |
|
group.setdefault('amsgrad', False) |
|
|
|
@torch.no_grad() |
|
def step(self, closure=None): |
|
"""Performs a single optimization step. |
|
|
|
Arguments: |
|
closure (callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
loss = None |
|
if closure is not None: |
|
with torch.enable_grad(): |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
for p in group['params']: |
|
if p.grad is None: |
|
continue |
|
grad = p.grad |
|
if grad.is_sparse: |
|
raise RuntimeError('Sparse gradients are not supported.') |
|
amsgrad = group['amsgrad'] |
|
|
|
state = self.state[p] |
|
|
|
|
|
if len(state) == 0: |
|
state['step'] = 0 |
|
|
|
state['exp_avg'] = torch.zeros_like(p) |
|
|
|
state['exp_avg_sq'] = torch.zeros([]).to(state['exp_avg'].device) |
|
if amsgrad: |
|
|
|
state['max_exp_avg_sq'] = torch.zeros([]).to(state['exp_avg'].device) |
|
|
|
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] |
|
if amsgrad: |
|
max_exp_avg_sq = state['max_exp_avg_sq'] |
|
beta1, beta2 = group['betas'] |
|
|
|
state['step'] += 1 |
|
|
|
norm = torch.sum(torch.pow(grad, 2)) |
|
|
|
if exp_avg_sq == 0: |
|
exp_avg_sq.copy_(norm) |
|
else: |
|
exp_avg_sq.mul_(beta2).add_(norm, alpha=1 - beta2) |
|
|
|
if amsgrad: |
|
|
|
torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) |
|
|
|
denom = max_exp_avg_sq.sqrt().add_(group['eps']) |
|
else: |
|
denom = exp_avg_sq.sqrt().add_(group['eps']) |
|
|
|
grad.div_(denom) |
|
if group['weight_decay'] != 0: |
|
grad.add_(p, alpha=group['weight_decay']) |
|
if group['grad_averaging']: |
|
grad.mul_(1 - beta1) |
|
exp_avg.mul_(beta1).add_(grad) |
|
|
|
p.add_(exp_avg, alpha=-group['lr']) |
|
|
|
return loss |
|
|