|
""" Lookahead Optimizer Wrapper. |
|
Implementation modified from: https://github.com/alphadl/lookahead.pytorch |
|
Paper: `Lookahead Optimizer: k steps forward, 1 step back` - https://arxiv.org/abs/1907.08610 |
|
|
|
Hacked together by / Copyright 2020 Ross Wightman |
|
""" |
|
from collections import OrderedDict |
|
from typing import Callable, Dict |
|
|
|
import torch |
|
from torch.optim.optimizer import Optimizer |
|
from collections import defaultdict |
|
|
|
|
|
class Lookahead(Optimizer): |
|
def __init__(self, base_optimizer, alpha=0.5, k=6): |
|
|
|
self._optimizer_step_pre_hooks: Dict[int, Callable] = OrderedDict() |
|
self._optimizer_step_post_hooks: Dict[int, Callable] = OrderedDict() |
|
if not 0.0 <= alpha <= 1.0: |
|
raise ValueError(f'Invalid slow update rate: {alpha}') |
|
if not 1 <= k: |
|
raise ValueError(f'Invalid lookahead steps: {k}') |
|
defaults = dict(lookahead_alpha=alpha, lookahead_k=k, lookahead_step=0) |
|
self._base_optimizer = base_optimizer |
|
self.param_groups = base_optimizer.param_groups |
|
self.defaults = base_optimizer.defaults |
|
self.defaults.update(defaults) |
|
self.state = defaultdict(dict) |
|
|
|
for name, default in defaults.items(): |
|
for group in self._base_optimizer.param_groups: |
|
group.setdefault(name, default) |
|
|
|
@torch.no_grad() |
|
def update_slow(self, group): |
|
for fast_p in group["params"]: |
|
if fast_p.grad is None: |
|
continue |
|
param_state = self._base_optimizer.state[fast_p] |
|
if 'lookahead_slow_buff' not in param_state: |
|
param_state['lookahead_slow_buff'] = torch.empty_like(fast_p) |
|
param_state['lookahead_slow_buff'].copy_(fast_p) |
|
slow = param_state['lookahead_slow_buff'] |
|
slow.add_(fast_p - slow, alpha=group['lookahead_alpha']) |
|
fast_p.copy_(slow) |
|
|
|
def sync_lookahead(self): |
|
for group in self._base_optimizer.param_groups: |
|
self.update_slow(group) |
|
|
|
@torch.no_grad() |
|
def step(self, closure=None): |
|
loss = self._base_optimizer.step(closure) |
|
for group in self._base_optimizer.param_groups: |
|
group['lookahead_step'] += 1 |
|
if group['lookahead_step'] % group['lookahead_k'] == 0: |
|
self.update_slow(group) |
|
return loss |
|
|
|
def state_dict(self): |
|
return self._base_optimizer.state_dict() |
|
|
|
def load_state_dict(self, state_dict): |
|
self._base_optimizer.load_state_dict(state_dict) |
|
self.param_groups = self._base_optimizer.param_groups |
|
|