|
""" Activations |
|
|
|
A collection of activations fn and modules with a common interface so that they can |
|
easily be swapped. All have an `inplace` arg even if not used. |
|
|
|
Hacked together by / Copyright 2020 Ross Wightman |
|
""" |
|
|
|
import torch |
|
from torch import nn as nn |
|
from torch.nn import functional as F |
|
|
|
|
|
def swish(x, inplace: bool = False): |
|
"""Swish - Described in: https://arxiv.org/abs/1710.05941 |
|
""" |
|
return x.mul_(x.sigmoid()) if inplace else x.mul(x.sigmoid()) |
|
|
|
|
|
class Swish(nn.Module): |
|
def __init__(self, inplace: bool = False): |
|
super(Swish, self).__init__() |
|
self.inplace = inplace |
|
|
|
def forward(self, x): |
|
return swish(x, self.inplace) |
|
|
|
|
|
def mish(x, inplace: bool = False): |
|
"""Mish: A Self Regularized Non-Monotonic Neural Activation Function - https://arxiv.org/abs/1908.08681 |
|
NOTE: I don't have a working inplace variant |
|
""" |
|
return x.mul(F.softplus(x).tanh()) |
|
|
|
|
|
class Mish(nn.Module): |
|
"""Mish: A Self Regularized Non-Monotonic Neural Activation Function - https://arxiv.org/abs/1908.08681 |
|
""" |
|
def __init__(self, inplace: bool = False): |
|
super(Mish, self).__init__() |
|
|
|
def forward(self, x): |
|
return mish(x) |
|
|
|
|
|
def sigmoid(x, inplace: bool = False): |
|
return x.sigmoid_() if inplace else x.sigmoid() |
|
|
|
|
|
|
|
class Sigmoid(nn.Module): |
|
def __init__(self, inplace: bool = False): |
|
super(Sigmoid, self).__init__() |
|
self.inplace = inplace |
|
|
|
def forward(self, x): |
|
return x.sigmoid_() if self.inplace else x.sigmoid() |
|
|
|
|
|
def tanh(x, inplace: bool = False): |
|
return x.tanh_() if inplace else x.tanh() |
|
|
|
|
|
|
|
class Tanh(nn.Module): |
|
def __init__(self, inplace: bool = False): |
|
super(Tanh, self).__init__() |
|
self.inplace = inplace |
|
|
|
def forward(self, x): |
|
return x.tanh_() if self.inplace else x.tanh() |
|
|
|
|
|
def hard_swish(x, inplace: bool = False): |
|
inner = F.relu6(x + 3.).div_(6.) |
|
return x.mul_(inner) if inplace else x.mul(inner) |
|
|
|
|
|
class HardSwish(nn.Module): |
|
def __init__(self, inplace: bool = False): |
|
super(HardSwish, self).__init__() |
|
self.inplace = inplace |
|
|
|
def forward(self, x): |
|
return hard_swish(x, self.inplace) |
|
|
|
|
|
def hard_sigmoid(x, inplace: bool = False): |
|
if inplace: |
|
return x.add_(3.).clamp_(0., 6.).div_(6.) |
|
else: |
|
return F.relu6(x + 3.) / 6. |
|
|
|
|
|
class HardSigmoid(nn.Module): |
|
def __init__(self, inplace: bool = False): |
|
super(HardSigmoid, self).__init__() |
|
self.inplace = inplace |
|
|
|
def forward(self, x): |
|
return hard_sigmoid(x, self.inplace) |
|
|
|
|
|
def hard_mish(x, inplace: bool = False): |
|
""" Hard Mish |
|
Experimental, based on notes by Mish author Diganta Misra at |
|
https://github.com/digantamisra98/H-Mish/blob/0da20d4bc58e696b6803f2523c58d3c8a82782d0/README.md |
|
""" |
|
if inplace: |
|
return x.mul_(0.5 * (x + 2).clamp(min=0, max=2)) |
|
else: |
|
return 0.5 * x * (x + 2).clamp(min=0, max=2) |
|
|
|
|
|
class HardMish(nn.Module): |
|
def __init__(self, inplace: bool = False): |
|
super(HardMish, self).__init__() |
|
self.inplace = inplace |
|
|
|
def forward(self, x): |
|
return hard_mish(x, self.inplace) |
|
|
|
|
|
class PReLU(nn.PReLU): |
|
"""Applies PReLU (w/ dummy inplace arg) |
|
""" |
|
def __init__(self, num_parameters: int = 1, init: float = 0.25, inplace: bool = False) -> None: |
|
super(PReLU, self).__init__(num_parameters=num_parameters, init=init) |
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor: |
|
return F.prelu(input, self.weight) |
|
|
|
|
|
def gelu(x: torch.Tensor, inplace: bool = False) -> torch.Tensor: |
|
return F.gelu(x) |
|
|
|
|
|
class GELU(nn.Module): |
|
"""Applies the Gaussian Error Linear Units function (w/ dummy inplace arg) |
|
""" |
|
def __init__(self, inplace: bool = False): |
|
super(GELU, self).__init__() |
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor: |
|
return F.gelu(input) |
|
|
|
|
|
def gelu_tanh(x: torch.Tensor, inplace: bool = False) -> torch.Tensor: |
|
return F.gelu(x, approximate='tanh') |
|
|
|
|
|
class GELUTanh(nn.Module): |
|
"""Applies the Gaussian Error Linear Units function (w/ dummy inplace arg) |
|
""" |
|
def __init__(self, inplace: bool = False): |
|
super(GELUTanh, self).__init__() |
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor: |
|
return F.gelu(input, approximate='tanh') |
|
|
|
|
|
def quick_gelu(x: torch.Tensor, inplace: bool = False) -> torch.Tensor: |
|
return x * torch.sigmoid(1.702 * x) |
|
|
|
|
|
class QuickGELU(nn.Module): |
|
"""Applies the Gaussian Error Linear Units function (w/ dummy inplace arg) |
|
""" |
|
def __init__(self, inplace: bool = False): |
|
super(QuickGELU, self).__init__() |
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor: |
|
return quick_gelu(input) |
|
|