|
""" MultiStep LR Scheduler |
|
|
|
Basic multi step LR schedule with warmup, noise. |
|
""" |
|
import torch |
|
import bisect |
|
from timm.scheduler.scheduler import Scheduler |
|
from typing import List |
|
|
|
class MultiStepLRScheduler(Scheduler): |
|
""" |
|
""" |
|
|
|
def __init__( |
|
self, |
|
optimizer: torch.optim.Optimizer, |
|
decay_t: List[int], |
|
decay_rate: float = 1., |
|
warmup_t=0, |
|
warmup_lr_init=0, |
|
warmup_prefix=True, |
|
t_in_epochs=True, |
|
noise_range_t=None, |
|
noise_pct=0.67, |
|
noise_std=1.0, |
|
noise_seed=42, |
|
initialize=True, |
|
) -> None: |
|
super().__init__( |
|
optimizer, |
|
param_group_field="lr", |
|
t_in_epochs=t_in_epochs, |
|
noise_range_t=noise_range_t, |
|
noise_pct=noise_pct, |
|
noise_std=noise_std, |
|
noise_seed=noise_seed, |
|
initialize=initialize, |
|
) |
|
|
|
self.decay_t = decay_t |
|
self.decay_rate = decay_rate |
|
self.warmup_t = warmup_t |
|
self.warmup_lr_init = warmup_lr_init |
|
self.warmup_prefix = warmup_prefix |
|
if self.warmup_t: |
|
self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in self.base_values] |
|
super().update_groups(self.warmup_lr_init) |
|
else: |
|
self.warmup_steps = [1 for _ in self.base_values] |
|
|
|
def get_curr_decay_steps(self, t): |
|
|
|
|
|
return bisect.bisect_right(self.decay_t, t + 1) |
|
|
|
def _get_lr(self, t: int) -> List[float]: |
|
if t < self.warmup_t: |
|
lrs = [self.warmup_lr_init + t * s for s in self.warmup_steps] |
|
else: |
|
if self.warmup_prefix: |
|
t = t - self.warmup_t |
|
lrs = [v * (self.decay_rate ** self.get_curr_decay_steps(t)) for v in self.base_values] |
|
return lrs |
|
|