|
""" HRNet |
|
|
|
Copied from https://github.com/HRNet/HRNet-Image-Classification |
|
|
|
Original header: |
|
Copyright (c) Microsoft |
|
Licensed under the MIT License. |
|
Written by Bin Xiao ([email protected]) |
|
Modified by Ke Sun ([email protected]) |
|
""" |
|
import logging |
|
from typing import List |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from timm.layers import create_classifier |
|
from ._builder import build_model_with_cfg, pretrained_cfg_for_features |
|
from ._features import FeatureInfo |
|
from ._registry import register_model, generate_default_cfgs |
|
from .resnet import BasicBlock, Bottleneck |
|
|
|
__all__ = ['HighResolutionNet', 'HighResolutionNetFeatures'] |
|
|
|
_BN_MOMENTUM = 0.1 |
|
_logger = logging.getLogger(__name__) |
|
|
|
|
|
cfg_cls = dict( |
|
hrnet_w18_small=dict( |
|
stem_width=64, |
|
stage1=dict( |
|
num_modules=1, |
|
num_branches=1, |
|
block_type='BOTTLENECK', |
|
num_blocks=(1,), |
|
num_channels=(32,), |
|
fuse_method='SUM', |
|
), |
|
stage2=dict( |
|
num_modules=1, |
|
num_branches=2, |
|
block_type='BASIC', |
|
num_blocks=(2, 2), |
|
num_channels=(16, 32), |
|
fuse_method='SUM' |
|
), |
|
stage3=dict( |
|
num_modules=1, |
|
num_branches=3, |
|
block_type='BASIC', |
|
num_blocks=(2, 2, 2), |
|
num_channels=(16, 32, 64), |
|
fuse_method='SUM' |
|
), |
|
stage4=dict( |
|
num_modules=1, |
|
num_branches=4, |
|
block_type='BASIC', |
|
num_blocks=(2, 2, 2, 2), |
|
num_channels=(16, 32, 64, 128), |
|
fuse_method='SUM', |
|
), |
|
), |
|
|
|
hrnet_w18_small_v2=dict( |
|
stem_width=64, |
|
stage1=dict( |
|
num_modules=1, |
|
num_branches=1, |
|
block_type='BOTTLENECK', |
|
num_blocks=(2,), |
|
num_channels=(64,), |
|
fuse_method='SUM', |
|
), |
|
stage2=dict( |
|
num_modules=1, |
|
num_branches=2, |
|
block_type='BASIC', |
|
num_blocks=(2, 2), |
|
num_channels=(18, 36), |
|
fuse_method='SUM' |
|
), |
|
stage3=dict( |
|
num_modules=3, |
|
num_branches=3, |
|
block_type='BASIC', |
|
num_blocks=(2, 2, 2), |
|
num_channels=(18, 36, 72), |
|
fuse_method='SUM' |
|
), |
|
stage4=dict( |
|
num_modules=2, |
|
num_branches=4, |
|
block_type='BASIC', |
|
num_blocks=(2, 2, 2, 2), |
|
num_channels=(18, 36, 72, 144), |
|
fuse_method='SUM', |
|
), |
|
), |
|
|
|
hrnet_w18=dict( |
|
stem_width=64, |
|
stage1=dict( |
|
num_modules=1, |
|
num_branches=1, |
|
block_type='BOTTLENECK', |
|
num_blocks=(4,), |
|
num_channels=(64,), |
|
fuse_method='SUM', |
|
), |
|
stage2=dict( |
|
num_modules=1, |
|
num_branches=2, |
|
block_type='BASIC', |
|
num_blocks=(4, 4), |
|
num_channels=(18, 36), |
|
fuse_method='SUM' |
|
), |
|
stage3=dict( |
|
num_modules=4, |
|
num_branches=3, |
|
block_type='BASIC', |
|
num_blocks=(4, 4, 4), |
|
num_channels=(18, 36, 72), |
|
fuse_method='SUM' |
|
), |
|
stage4=dict( |
|
num_modules=3, |
|
num_branches=4, |
|
block_type='BASIC', |
|
num_blocks=(4, 4, 4, 4), |
|
num_channels=(18, 36, 72, 144), |
|
fuse_method='SUM', |
|
), |
|
), |
|
|
|
hrnet_w30=dict( |
|
stem_width=64, |
|
stage1=dict( |
|
num_modules=1, |
|
num_branches=1, |
|
block_type='BOTTLENECK', |
|
num_blocks=(4,), |
|
num_channels=(64,), |
|
fuse_method='SUM', |
|
), |
|
stage2=dict( |
|
num_modules=1, |
|
num_branches=2, |
|
block_type='BASIC', |
|
num_blocks=(4, 4), |
|
num_channels=(30, 60), |
|
fuse_method='SUM' |
|
), |
|
stage3=dict( |
|
num_modules=4, |
|
num_branches=3, |
|
block_type='BASIC', |
|
num_blocks=(4, 4, 4), |
|
num_channels=(30, 60, 120), |
|
fuse_method='SUM' |
|
), |
|
stage4=dict( |
|
num_modules=3, |
|
num_branches=4, |
|
block_type='BASIC', |
|
num_blocks=(4, 4, 4, 4), |
|
num_channels=(30, 60, 120, 240), |
|
fuse_method='SUM', |
|
), |
|
), |
|
|
|
hrnet_w32=dict( |
|
stem_width=64, |
|
stage1=dict( |
|
num_modules=1, |
|
num_branches=1, |
|
block_type='BOTTLENECK', |
|
num_blocks=(4,), |
|
num_channels=(64,), |
|
fuse_method='SUM', |
|
), |
|
stage2=dict( |
|
num_modules=1, |
|
num_branches=2, |
|
block_type='BASIC', |
|
num_blocks=(4, 4), |
|
num_channels=(32, 64), |
|
fuse_method='SUM' |
|
), |
|
stage3=dict( |
|
num_modules=4, |
|
num_branches=3, |
|
block_type='BASIC', |
|
num_blocks=(4, 4, 4), |
|
num_channels=(32, 64, 128), |
|
fuse_method='SUM' |
|
), |
|
stage4=dict( |
|
num_modules=3, |
|
num_branches=4, |
|
block_type='BASIC', |
|
num_blocks=(4, 4, 4, 4), |
|
num_channels=(32, 64, 128, 256), |
|
fuse_method='SUM', |
|
), |
|
), |
|
|
|
hrnet_w40=dict( |
|
stem_width=64, |
|
stage1=dict( |
|
num_modules=1, |
|
num_branches=1, |
|
block_type='BOTTLENECK', |
|
num_blocks=(4,), |
|
num_channels=(64,), |
|
fuse_method='SUM', |
|
), |
|
stage2=dict( |
|
num_modules=1, |
|
num_branches=2, |
|
block_type='BASIC', |
|
num_blocks=(4, 4), |
|
num_channels=(40, 80), |
|
fuse_method='SUM' |
|
), |
|
stage3=dict( |
|
num_modules=4, |
|
num_branches=3, |
|
block_type='BASIC', |
|
num_blocks=(4, 4, 4), |
|
num_channels=(40, 80, 160), |
|
fuse_method='SUM' |
|
), |
|
stage4=dict( |
|
num_modules=3, |
|
num_branches=4, |
|
block_type='BASIC', |
|
num_blocks=(4, 4, 4, 4), |
|
num_channels=(40, 80, 160, 320), |
|
fuse_method='SUM', |
|
), |
|
), |
|
|
|
hrnet_w44=dict( |
|
stem_width=64, |
|
stage1=dict( |
|
num_modules=1, |
|
num_branches=1, |
|
block_type='BOTTLENECK', |
|
num_blocks=(4,), |
|
num_channels=(64,), |
|
fuse_method='SUM', |
|
), |
|
stage2=dict( |
|
num_modules=1, |
|
num_branches=2, |
|
block_type='BASIC', |
|
num_blocks=(4, 4), |
|
num_channels=(44, 88), |
|
fuse_method='SUM' |
|
), |
|
stage3=dict( |
|
num_modules=4, |
|
num_branches=3, |
|
block_type='BASIC', |
|
num_blocks=(4, 4, 4), |
|
num_channels=(44, 88, 176), |
|
fuse_method='SUM' |
|
), |
|
stage4=dict( |
|
num_modules=3, |
|
num_branches=4, |
|
block_type='BASIC', |
|
num_blocks=(4, 4, 4, 4), |
|
num_channels=(44, 88, 176, 352), |
|
fuse_method='SUM', |
|
), |
|
), |
|
|
|
hrnet_w48=dict( |
|
stem_width=64, |
|
stage1=dict( |
|
num_modules=1, |
|
num_branches=1, |
|
block_type='BOTTLENECK', |
|
num_blocks=(4,), |
|
num_channels=(64,), |
|
fuse_method='SUM', |
|
), |
|
stage2=dict( |
|
num_modules=1, |
|
num_branches=2, |
|
block_type='BASIC', |
|
num_blocks=(4, 4), |
|
num_channels=(48, 96), |
|
fuse_method='SUM' |
|
), |
|
stage3=dict( |
|
num_modules=4, |
|
num_branches=3, |
|
block_type='BASIC', |
|
num_blocks=(4, 4, 4), |
|
num_channels=(48, 96, 192), |
|
fuse_method='SUM' |
|
), |
|
stage4=dict( |
|
num_modules=3, |
|
num_branches=4, |
|
block_type='BASIC', |
|
num_blocks=(4, 4, 4, 4), |
|
num_channels=(48, 96, 192, 384), |
|
fuse_method='SUM', |
|
), |
|
), |
|
|
|
hrnet_w64=dict( |
|
stem_width=64, |
|
stage1=dict( |
|
num_modules=1, |
|
num_branches=1, |
|
block_type='BOTTLENECK', |
|
num_blocks=(4,), |
|
num_channels=(64,), |
|
fuse_method='SUM', |
|
), |
|
stage2=dict( |
|
num_modules=1, |
|
num_branches=2, |
|
block_type='BASIC', |
|
num_blocks=(4, 4), |
|
num_channels=(64, 128), |
|
fuse_method='SUM' |
|
), |
|
stage3=dict( |
|
num_modules=4, |
|
num_branches=3, |
|
block_type='BASIC', |
|
num_blocks=(4, 4, 4), |
|
num_channels=(64, 128, 256), |
|
fuse_method='SUM' |
|
), |
|
stage4=dict( |
|
num_modules=3, |
|
num_branches=4, |
|
block_type='BASIC', |
|
num_blocks=(4, 4, 4, 4), |
|
num_channels=(64, 128, 256, 512), |
|
fuse_method='SUM', |
|
), |
|
) |
|
) |
|
|
|
|
|
class HighResolutionModule(nn.Module): |
|
def __init__( |
|
self, |
|
num_branches, |
|
block_types, |
|
num_blocks, |
|
num_in_chs, |
|
num_channels, |
|
fuse_method, |
|
multi_scale_output=True, |
|
): |
|
super(HighResolutionModule, self).__init__() |
|
self._check_branches( |
|
num_branches, |
|
block_types, |
|
num_blocks, |
|
num_in_chs, |
|
num_channels, |
|
) |
|
|
|
self.num_in_chs = num_in_chs |
|
self.fuse_method = fuse_method |
|
self.num_branches = num_branches |
|
|
|
self.multi_scale_output = multi_scale_output |
|
|
|
self.branches = self._make_branches( |
|
num_branches, |
|
block_types, |
|
num_blocks, |
|
num_channels, |
|
) |
|
self.fuse_layers = self._make_fuse_layers() |
|
self.fuse_act = nn.ReLU(False) |
|
|
|
def _check_branches(self, num_branches, block_types, num_blocks, num_in_chs, num_channels): |
|
error_msg = '' |
|
if num_branches != len(num_blocks): |
|
error_msg = 'num_branches({}) <> num_blocks({})'.format(num_branches, len(num_blocks)) |
|
elif num_branches != len(num_channels): |
|
error_msg = 'num_branches({}) <> num_channels({})'.format(num_branches, len(num_channels)) |
|
elif num_branches != len(num_in_chs): |
|
error_msg = 'num_branches({}) <> num_in_chs({})'.format(num_branches, len(num_in_chs)) |
|
if error_msg: |
|
_logger.error(error_msg) |
|
raise ValueError(error_msg) |
|
|
|
def _make_one_branch(self, branch_index, block_type, num_blocks, num_channels, stride=1): |
|
downsample = None |
|
if stride != 1 or self.num_in_chs[branch_index] != num_channels[branch_index] * block_type.expansion: |
|
downsample = nn.Sequential( |
|
nn.Conv2d( |
|
self.num_in_chs[branch_index], num_channels[branch_index] * block_type.expansion, |
|
kernel_size=1, stride=stride, bias=False), |
|
nn.BatchNorm2d(num_channels[branch_index] * block_type.expansion, momentum=_BN_MOMENTUM), |
|
) |
|
|
|
layers = [block_type(self.num_in_chs[branch_index], num_channels[branch_index], stride, downsample)] |
|
self.num_in_chs[branch_index] = num_channels[branch_index] * block_type.expansion |
|
for i in range(1, num_blocks[branch_index]): |
|
layers.append(block_type(self.num_in_chs[branch_index], num_channels[branch_index])) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def _make_branches(self, num_branches, block_type, num_blocks, num_channels): |
|
branches = [] |
|
for i in range(num_branches): |
|
branches.append(self._make_one_branch(i, block_type, num_blocks, num_channels)) |
|
|
|
return nn.ModuleList(branches) |
|
|
|
def _make_fuse_layers(self): |
|
if self.num_branches == 1: |
|
return nn.Identity() |
|
|
|
num_branches = self.num_branches |
|
num_in_chs = self.num_in_chs |
|
fuse_layers = [] |
|
for i in range(num_branches if self.multi_scale_output else 1): |
|
fuse_layer = [] |
|
for j in range(num_branches): |
|
if j > i: |
|
fuse_layer.append(nn.Sequential( |
|
nn.Conv2d(num_in_chs[j], num_in_chs[i], 1, 1, 0, bias=False), |
|
nn.BatchNorm2d(num_in_chs[i], momentum=_BN_MOMENTUM), |
|
nn.Upsample(scale_factor=2 ** (j - i), mode='nearest'))) |
|
elif j == i: |
|
fuse_layer.append(nn.Identity()) |
|
else: |
|
conv3x3s = [] |
|
for k in range(i - j): |
|
if k == i - j - 1: |
|
num_out_chs_conv3x3 = num_in_chs[i] |
|
conv3x3s.append(nn.Sequential( |
|
nn.Conv2d(num_in_chs[j], num_out_chs_conv3x3, 3, 2, 1, bias=False), |
|
nn.BatchNorm2d(num_out_chs_conv3x3, momentum=_BN_MOMENTUM) |
|
)) |
|
else: |
|
num_out_chs_conv3x3 = num_in_chs[j] |
|
conv3x3s.append(nn.Sequential( |
|
nn.Conv2d(num_in_chs[j], num_out_chs_conv3x3, 3, 2, 1, bias=False), |
|
nn.BatchNorm2d(num_out_chs_conv3x3, momentum=_BN_MOMENTUM), |
|
nn.ReLU(False) |
|
)) |
|
fuse_layer.append(nn.Sequential(*conv3x3s)) |
|
fuse_layers.append(nn.ModuleList(fuse_layer)) |
|
|
|
return nn.ModuleList(fuse_layers) |
|
|
|
def get_num_in_chs(self): |
|
return self.num_in_chs |
|
|
|
def forward(self, x: List[torch.Tensor]) -> List[torch.Tensor]: |
|
if self.num_branches == 1: |
|
return [self.branches[0](x[0])] |
|
|
|
for i, branch in enumerate(self.branches): |
|
x[i] = branch(x[i]) |
|
|
|
x_fuse = [] |
|
for i, fuse_outer in enumerate(self.fuse_layers): |
|
y = None |
|
for j, f in enumerate(fuse_outer): |
|
if y is None: |
|
y = f(x[j]) |
|
else: |
|
y = y + f(x[j]) |
|
x_fuse.append(self.fuse_act(y)) |
|
return x_fuse |
|
|
|
|
|
class SequentialList(nn.Sequential): |
|
|
|
def __init__(self, *args): |
|
super(SequentialList, self).__init__(*args) |
|
|
|
@torch.jit._overload_method |
|
def forward(self, x): |
|
|
|
pass |
|
|
|
@torch.jit._overload_method |
|
def forward(self, x): |
|
|
|
pass |
|
|
|
def forward(self, x) -> List[torch.Tensor]: |
|
for module in self: |
|
x = module(x) |
|
return x |
|
|
|
|
|
@torch.jit.interface |
|
class ModuleInterface(torch.nn.Module): |
|
def forward(self, input: torch.Tensor) -> torch.Tensor: |
|
pass |
|
|
|
|
|
block_types_dict = { |
|
'BASIC': BasicBlock, |
|
'BOTTLENECK': Bottleneck |
|
} |
|
|
|
|
|
class HighResolutionNet(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
cfg, |
|
in_chans=3, |
|
num_classes=1000, |
|
output_stride=32, |
|
global_pool='avg', |
|
drop_rate=0.0, |
|
head='classification', |
|
**kwargs, |
|
): |
|
super(HighResolutionNet, self).__init__() |
|
self.num_classes = num_classes |
|
assert output_stride == 32 |
|
|
|
cfg.update(**kwargs) |
|
stem_width = cfg['stem_width'] |
|
self.conv1 = nn.Conv2d(in_chans, stem_width, kernel_size=3, stride=2, padding=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(stem_width, momentum=_BN_MOMENTUM) |
|
self.act1 = nn.ReLU(inplace=True) |
|
self.conv2 = nn.Conv2d(stem_width, 64, kernel_size=3, stride=2, padding=1, bias=False) |
|
self.bn2 = nn.BatchNorm2d(64, momentum=_BN_MOMENTUM) |
|
self.act2 = nn.ReLU(inplace=True) |
|
|
|
self.stage1_cfg = cfg['stage1'] |
|
num_channels = self.stage1_cfg['num_channels'][0] |
|
block_type = block_types_dict[self.stage1_cfg['block_type']] |
|
num_blocks = self.stage1_cfg['num_blocks'][0] |
|
self.layer1 = self._make_layer(block_type, 64, num_channels, num_blocks) |
|
stage1_out_channel = block_type.expansion * num_channels |
|
|
|
self.stage2_cfg = cfg['stage2'] |
|
num_channels = self.stage2_cfg['num_channels'] |
|
block_type = block_types_dict[self.stage2_cfg['block_type']] |
|
num_channels = [num_channels[i] * block_type.expansion for i in range(len(num_channels))] |
|
self.transition1 = self._make_transition_layer([stage1_out_channel], num_channels) |
|
self.stage2, pre_stage_channels = self._make_stage(self.stage2_cfg, num_channels) |
|
|
|
self.stage3_cfg = cfg['stage3'] |
|
num_channels = self.stage3_cfg['num_channels'] |
|
block_type = block_types_dict[self.stage3_cfg['block_type']] |
|
num_channels = [num_channels[i] * block_type.expansion for i in range(len(num_channels))] |
|
self.transition2 = self._make_transition_layer(pre_stage_channels, num_channels) |
|
self.stage3, pre_stage_channels = self._make_stage(self.stage3_cfg, num_channels) |
|
|
|
self.stage4_cfg = cfg['stage4'] |
|
num_channels = self.stage4_cfg['num_channels'] |
|
block_type = block_types_dict[self.stage4_cfg['block_type']] |
|
num_channels = [num_channels[i] * block_type.expansion for i in range(len(num_channels))] |
|
self.transition3 = self._make_transition_layer(pre_stage_channels, num_channels) |
|
self.stage4, pre_stage_channels = self._make_stage(self.stage4_cfg, num_channels, multi_scale_output=True) |
|
|
|
self.head = head |
|
self.head_channels = None |
|
head_conv_bias = cfg.pop('head_conv_bias', True) |
|
if head == 'classification': |
|
|
|
self.num_features = 2048 |
|
self.incre_modules, self.downsamp_modules, self.final_layer = self._make_head( |
|
pre_stage_channels, |
|
conv_bias=head_conv_bias, |
|
) |
|
self.global_pool, self.head_drop, self.classifier = create_classifier( |
|
self.num_features, |
|
self.num_classes, |
|
pool_type=global_pool, |
|
drop_rate=drop_rate, |
|
) |
|
else: |
|
if head == 'incre': |
|
self.num_features = 2048 |
|
self.incre_modules, _, _ = self._make_head(pre_stage_channels, incre_only=True) |
|
else: |
|
self.num_features = 256 |
|
self.incre_modules = None |
|
self.global_pool = nn.Identity() |
|
self.head_drop = nn.Identity() |
|
self.classifier = nn.Identity() |
|
|
|
curr_stride = 2 |
|
|
|
self.feature_info = [dict(num_chs=64, reduction=curr_stride, module='stem')] |
|
for i, c in enumerate(self.head_channels if self.head_channels else num_channels): |
|
curr_stride *= 2 |
|
c = c * 4 if self.head_channels else c |
|
self.feature_info += [dict(num_chs=c, reduction=curr_stride, module=f'stage{i + 1}')] |
|
|
|
self.init_weights() |
|
|
|
def _make_head(self, pre_stage_channels, incre_only=False, conv_bias=True): |
|
head_block_type = Bottleneck |
|
self.head_channels = [32, 64, 128, 256] |
|
|
|
|
|
|
|
incre_modules = [] |
|
for i, channels in enumerate(pre_stage_channels): |
|
incre_modules.append(self._make_layer(head_block_type, channels, self.head_channels[i], 1, stride=1)) |
|
incre_modules = nn.ModuleList(incre_modules) |
|
if incre_only: |
|
return incre_modules, None, None |
|
|
|
|
|
downsamp_modules = [] |
|
for i in range(len(pre_stage_channels) - 1): |
|
in_channels = self.head_channels[i] * head_block_type.expansion |
|
out_channels = self.head_channels[i + 1] * head_block_type.expansion |
|
downsamp_module = nn.Sequential( |
|
nn.Conv2d( |
|
in_channels=in_channels, out_channels=out_channels, |
|
kernel_size=3, stride=2, padding=1, bias=conv_bias), |
|
nn.BatchNorm2d(out_channels, momentum=_BN_MOMENTUM), |
|
nn.ReLU(inplace=True) |
|
) |
|
downsamp_modules.append(downsamp_module) |
|
downsamp_modules = nn.ModuleList(downsamp_modules) |
|
|
|
final_layer = nn.Sequential( |
|
nn.Conv2d( |
|
in_channels=self.head_channels[3] * head_block_type.expansion, out_channels=self.num_features, |
|
kernel_size=1, stride=1, padding=0, bias=conv_bias), |
|
nn.BatchNorm2d(self.num_features, momentum=_BN_MOMENTUM), |
|
nn.ReLU(inplace=True) |
|
) |
|
|
|
return incre_modules, downsamp_modules, final_layer |
|
|
|
def _make_transition_layer(self, num_channels_pre_layer, num_channels_cur_layer): |
|
num_branches_cur = len(num_channels_cur_layer) |
|
num_branches_pre = len(num_channels_pre_layer) |
|
|
|
transition_layers = [] |
|
for i in range(num_branches_cur): |
|
if i < num_branches_pre: |
|
if num_channels_cur_layer[i] != num_channels_pre_layer[i]: |
|
transition_layers.append(nn.Sequential( |
|
nn.Conv2d(num_channels_pre_layer[i], num_channels_cur_layer[i], 3, 1, 1, bias=False), |
|
nn.BatchNorm2d(num_channels_cur_layer[i], momentum=_BN_MOMENTUM), |
|
nn.ReLU(inplace=True))) |
|
else: |
|
transition_layers.append(nn.Identity()) |
|
else: |
|
conv3x3s = [] |
|
for j in range(i + 1 - num_branches_pre): |
|
_in_chs = num_channels_pre_layer[-1] |
|
_out_chs = num_channels_cur_layer[i] if j == i - num_branches_pre else _in_chs |
|
conv3x3s.append(nn.Sequential( |
|
nn.Conv2d(_in_chs, _out_chs, 3, 2, 1, bias=False), |
|
nn.BatchNorm2d(_out_chs, momentum=_BN_MOMENTUM), |
|
nn.ReLU(inplace=True))) |
|
transition_layers.append(nn.Sequential(*conv3x3s)) |
|
|
|
return nn.ModuleList(transition_layers) |
|
|
|
def _make_layer(self, block_type, inplanes, planes, block_types, stride=1): |
|
downsample = None |
|
if stride != 1 or inplanes != planes * block_type.expansion: |
|
downsample = nn.Sequential( |
|
nn.Conv2d(inplanes, planes * block_type.expansion, kernel_size=1, stride=stride, bias=False), |
|
nn.BatchNorm2d(planes * block_type.expansion, momentum=_BN_MOMENTUM), |
|
) |
|
|
|
layers = [block_type(inplanes, planes, stride, downsample)] |
|
inplanes = planes * block_type.expansion |
|
for i in range(1, block_types): |
|
layers.append(block_type(inplanes, planes)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def _make_stage(self, layer_config, num_in_chs, multi_scale_output=True): |
|
num_modules = layer_config['num_modules'] |
|
num_branches = layer_config['num_branches'] |
|
num_blocks = layer_config['num_blocks'] |
|
num_channels = layer_config['num_channels'] |
|
block_type = block_types_dict[layer_config['block_type']] |
|
fuse_method = layer_config['fuse_method'] |
|
|
|
modules = [] |
|
for i in range(num_modules): |
|
|
|
reset_multi_scale_output = multi_scale_output or i < num_modules - 1 |
|
modules.append(HighResolutionModule( |
|
num_branches, block_type, num_blocks, num_in_chs, num_channels, fuse_method, reset_multi_scale_output) |
|
) |
|
num_in_chs = modules[-1].get_num_in_chs() |
|
|
|
return SequentialList(*modules), num_in_chs |
|
|
|
@torch.jit.ignore |
|
def init_weights(self): |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_( |
|
m.weight, mode='fan_out', nonlinearity='relu') |
|
elif isinstance(m, nn.BatchNorm2d): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
@torch.jit.ignore |
|
def group_matcher(self, coarse=False): |
|
matcher = dict( |
|
stem=r'^conv[12]|bn[12]', |
|
block_types=r'^(?:layer|stage|transition)(\d+)' if coarse else [ |
|
(r'^layer(\d+)\.(\d+)', None), |
|
(r'^stage(\d+)\.(\d+)', None), |
|
(r'^transition(\d+)', (99999,)), |
|
], |
|
) |
|
return matcher |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
assert not enable, "gradient checkpointing not supported" |
|
|
|
@torch.jit.ignore |
|
def get_classifier(self): |
|
return self.classifier |
|
|
|
def reset_classifier(self, num_classes, global_pool='avg'): |
|
self.num_classes = num_classes |
|
self.global_pool, self.classifier = create_classifier( |
|
self.num_features, self.num_classes, pool_type=global_pool) |
|
|
|
def stages(self, x) -> List[torch.Tensor]: |
|
x = self.layer1(x) |
|
|
|
xl = [t(x) for i, t in enumerate(self.transition1)] |
|
yl = self.stage2(xl) |
|
|
|
xl = [t(yl[-1]) if not isinstance(t, nn.Identity) else yl[i] for i, t in enumerate(self.transition2)] |
|
yl = self.stage3(xl) |
|
|
|
xl = [t(yl[-1]) if not isinstance(t, nn.Identity) else yl[i] for i, t in enumerate(self.transition3)] |
|
yl = self.stage4(xl) |
|
return yl |
|
|
|
def forward_features(self, x): |
|
|
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.act1(x) |
|
x = self.conv2(x) |
|
x = self.bn2(x) |
|
x = self.act2(x) |
|
|
|
|
|
yl = self.stages(x) |
|
if self.incre_modules is None or self.downsamp_modules is None: |
|
return yl |
|
|
|
y = None |
|
for i, incre in enumerate(self.incre_modules): |
|
if y is None: |
|
y = incre(yl[i]) |
|
else: |
|
down: ModuleInterface = self.downsamp_modules[i - 1] |
|
y = incre(yl[i]) + down.forward(y) |
|
|
|
y = self.final_layer(y) |
|
return y |
|
|
|
def forward_head(self, x, pre_logits: bool = False): |
|
|
|
x = self.global_pool(x) |
|
x = self.head_drop(x) |
|
return x if pre_logits else self.classifier(x) |
|
|
|
def forward(self, x): |
|
y = self.forward_features(x) |
|
x = self.forward_head(y) |
|
return x |
|
|
|
|
|
class HighResolutionNetFeatures(HighResolutionNet): |
|
"""HighResolutionNet feature extraction |
|
|
|
The design of HRNet makes it easy to grab feature maps, this class provides a simple wrapper to do so. |
|
It would be more complicated to use the FeatureNet helpers. |
|
|
|
The `feature_location=incre` allows grabbing increased channel count features using part of the |
|
classification head. If `feature_location=''` the default HRNet features are returned. First stem |
|
conv is used for stride 2 features. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
cfg, |
|
in_chans=3, |
|
num_classes=1000, |
|
output_stride=32, |
|
global_pool='avg', |
|
drop_rate=0.0, |
|
feature_location='incre', |
|
out_indices=(0, 1, 2, 3, 4), |
|
**kwargs, |
|
): |
|
assert feature_location in ('incre', '') |
|
super(HighResolutionNetFeatures, self).__init__( |
|
cfg, |
|
in_chans=in_chans, |
|
num_classes=num_classes, |
|
output_stride=output_stride, |
|
global_pool=global_pool, |
|
drop_rate=drop_rate, |
|
head=feature_location, |
|
**kwargs, |
|
) |
|
self.feature_info = FeatureInfo(self.feature_info, out_indices) |
|
self._out_idx = {f['index'] for f in self.feature_info.get_dicts()} |
|
|
|
def forward_features(self, x): |
|
assert False, 'Not supported' |
|
|
|
def forward(self, x) -> List[torch.tensor]: |
|
out = [] |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.act1(x) |
|
if 0 in self._out_idx: |
|
out.append(x) |
|
x = self.conv2(x) |
|
x = self.bn2(x) |
|
x = self.act2(x) |
|
x = self.stages(x) |
|
if self.incre_modules is not None: |
|
x = [incre(f) for f, incre in zip(x, self.incre_modules)] |
|
for i, f in enumerate(x): |
|
if i + 1 in self._out_idx: |
|
out.append(f) |
|
return out |
|
|
|
|
|
def _create_hrnet(variant, pretrained=False, cfg_variant=None, **model_kwargs): |
|
model_cls = HighResolutionNet |
|
features_only = False |
|
kwargs_filter = None |
|
if model_kwargs.pop('features_only', False): |
|
model_cls = HighResolutionNetFeatures |
|
kwargs_filter = ('num_classes', 'global_pool') |
|
features_only = True |
|
cfg_variant = cfg_variant or variant |
|
|
|
pretrained_strict = model_kwargs.pop( |
|
'pretrained_strict', |
|
not features_only and model_kwargs.get('head', 'classification') == 'classification' |
|
) |
|
model = build_model_with_cfg( |
|
model_cls, |
|
variant, |
|
pretrained, |
|
model_cfg=cfg_cls[cfg_variant], |
|
pretrained_strict=pretrained_strict, |
|
kwargs_filter=kwargs_filter, |
|
**model_kwargs, |
|
) |
|
if features_only: |
|
model.pretrained_cfg = pretrained_cfg_for_features(model.default_cfg) |
|
model.default_cfg = model.pretrained_cfg |
|
return model |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), |
|
'crop_pct': 0.875, 'interpolation': 'bilinear', |
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, |
|
'first_conv': 'conv1', 'classifier': 'classifier', |
|
**kwargs |
|
} |
|
|
|
|
|
default_cfgs = generate_default_cfgs({ |
|
'hrnet_w18_small.gluon_in1k': _cfg(hf_hub_id='timm/', interpolation='bicubic'), |
|
'hrnet_w18_small.ms_in1k': _cfg(hf_hub_id='timm/'), |
|
'hrnet_w18_small_v2.gluon_in1k': _cfg(hf_hub_id='timm/', interpolation='bicubic'), |
|
'hrnet_w18_small_v2.ms_in1k': _cfg(hf_hub_id='timm/'), |
|
'hrnet_w18.ms_aug_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
crop_pct=0.95, |
|
), |
|
'hrnet_w18.ms_in1k': _cfg(hf_hub_id='timm/'), |
|
'hrnet_w30.ms_in1k': _cfg(hf_hub_id='timm/'), |
|
'hrnet_w32.ms_in1k': _cfg(hf_hub_id='timm/'), |
|
'hrnet_w40.ms_in1k': _cfg(hf_hub_id='timm/'), |
|
'hrnet_w44.ms_in1k': _cfg(hf_hub_id='timm/'), |
|
'hrnet_w48.ms_in1k': _cfg(hf_hub_id='timm/'), |
|
'hrnet_w64.ms_in1k': _cfg(hf_hub_id='timm/'), |
|
|
|
'hrnet_w18_ssld.paddle_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
crop_pct=0.95, test_crop_pct=1.0, test_input_size=(3, 288, 288) |
|
), |
|
'hrnet_w48_ssld.paddle_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
crop_pct=0.95, test_crop_pct=1.0, test_input_size=(3, 288, 288) |
|
), |
|
}) |
|
|
|
|
|
@register_model |
|
def hrnet_w18_small(pretrained=False, **kwargs) -> HighResolutionNet: |
|
return _create_hrnet('hrnet_w18_small', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def hrnet_w18_small_v2(pretrained=False, **kwargs) -> HighResolutionNet: |
|
return _create_hrnet('hrnet_w18_small_v2', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def hrnet_w18(pretrained=False, **kwargs) -> HighResolutionNet: |
|
return _create_hrnet('hrnet_w18', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def hrnet_w30(pretrained=False, **kwargs) -> HighResolutionNet: |
|
return _create_hrnet('hrnet_w30', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def hrnet_w32(pretrained=False, **kwargs) -> HighResolutionNet: |
|
return _create_hrnet('hrnet_w32', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def hrnet_w40(pretrained=False, **kwargs) -> HighResolutionNet: |
|
return _create_hrnet('hrnet_w40', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def hrnet_w44(pretrained=False, **kwargs) -> HighResolutionNet: |
|
return _create_hrnet('hrnet_w44', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def hrnet_w48(pretrained=False, **kwargs) -> HighResolutionNet: |
|
return _create_hrnet('hrnet_w48', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def hrnet_w64(pretrained=False, **kwargs) -> HighResolutionNet: |
|
return _create_hrnet('hrnet_w64', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def hrnet_w18_ssld(pretrained=False, **kwargs) -> HighResolutionNet: |
|
kwargs.setdefault('head_conv_bias', False) |
|
return _create_hrnet('hrnet_w18_ssld', cfg_variant='hrnet_w18', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def hrnet_w48_ssld(pretrained=False, **kwargs) -> HighResolutionNet: |
|
kwargs.setdefault('head_conv_bias', False) |
|
return _create_hrnet('hrnet_w48_ssld', cfg_variant='hrnet_w48', pretrained=pretrained, **kwargs) |
|
|
|
|