|
""" EfficientViT (by MSRA) |
|
|
|
Paper: `EfficientViT: Memory Efficient Vision Transformer with Cascaded Group Attention` |
|
- https://arxiv.org/abs/2305.07027 |
|
|
|
Adapted from official impl at https://github.com/microsoft/Cream/tree/main/EfficientViT |
|
""" |
|
|
|
__all__ = ['EfficientVitMsra'] |
|
import itertools |
|
from collections import OrderedDict |
|
from typing import Dict |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from timm.layers import SqueezeExcite, SelectAdaptivePool2d, trunc_normal_, _assert |
|
from ._builder import build_model_with_cfg |
|
from ._manipulate import checkpoint_seq |
|
from ._registry import register_model, generate_default_cfgs |
|
|
|
|
|
class ConvNorm(torch.nn.Sequential): |
|
def __init__(self, in_chs, out_chs, ks=1, stride=1, pad=0, dilation=1, groups=1, bn_weight_init=1): |
|
super().__init__() |
|
self.conv = nn.Conv2d(in_chs, out_chs, ks, stride, pad, dilation, groups, bias=False) |
|
self.bn = nn.BatchNorm2d(out_chs) |
|
torch.nn.init.constant_(self.bn.weight, bn_weight_init) |
|
torch.nn.init.constant_(self.bn.bias, 0) |
|
|
|
@torch.no_grad() |
|
def fuse(self): |
|
c, bn = self.conv, self.bn |
|
w = bn.weight / (bn.running_var + bn.eps)**0.5 |
|
w = c.weight * w[:, None, None, None] |
|
b = bn.bias - bn.running_mean * bn.weight / \ |
|
(bn.running_var + bn.eps)**0.5 |
|
m = torch.nn.Conv2d( |
|
w.size(1) * self.conv.groups, w.size(0), w.shape[2:], |
|
stride=self.conv.stride, padding=self.conv.padding, dilation=self.conv.dilation, groups=self.conv.groups) |
|
m.weight.data.copy_(w) |
|
m.bias.data.copy_(b) |
|
return m |
|
|
|
|
|
class NormLinear(torch.nn.Sequential): |
|
def __init__(self, in_features, out_features, bias=True, std=0.02, drop=0.): |
|
super().__init__() |
|
self.bn = nn.BatchNorm1d(in_features) |
|
self.drop = nn.Dropout(drop) |
|
self.linear = nn.Linear(in_features, out_features, bias=bias) |
|
|
|
trunc_normal_(self.linear.weight, std=std) |
|
if self.linear.bias is not None: |
|
nn.init.constant_(self.linear.bias, 0) |
|
|
|
@torch.no_grad() |
|
def fuse(self): |
|
bn, linear = self.bn, self.linear |
|
w = bn.weight / (bn.running_var + bn.eps)**0.5 |
|
b = bn.bias - self.bn.running_mean * \ |
|
self.bn.weight / (bn.running_var + bn.eps)**0.5 |
|
w = linear.weight * w[None, :] |
|
if linear.bias is None: |
|
b = b @ self.linear.weight.T |
|
else: |
|
b = (linear.weight @ b[:, None]).view(-1) + self.linear.bias |
|
m = torch.nn.Linear(w.size(1), w.size(0)) |
|
m.weight.data.copy_(w) |
|
m.bias.data.copy_(b) |
|
return m |
|
|
|
|
|
class PatchMerging(torch.nn.Module): |
|
def __init__(self, dim, out_dim): |
|
super().__init__() |
|
hid_dim = int(dim * 4) |
|
self.conv1 = ConvNorm(dim, hid_dim, 1, 1, 0) |
|
self.act = torch.nn.ReLU() |
|
self.conv2 = ConvNorm(hid_dim, hid_dim, 3, 2, 1, groups=hid_dim) |
|
self.se = SqueezeExcite(hid_dim, .25) |
|
self.conv3 = ConvNorm(hid_dim, out_dim, 1, 1, 0) |
|
|
|
def forward(self, x): |
|
x = self.conv3(self.se(self.act(self.conv2(self.act(self.conv1(x)))))) |
|
return x |
|
|
|
|
|
class ResidualDrop(torch.nn.Module): |
|
def __init__(self, m, drop=0.): |
|
super().__init__() |
|
self.m = m |
|
self.drop = drop |
|
|
|
def forward(self, x): |
|
if self.training and self.drop > 0: |
|
return x + self.m(x) * torch.rand( |
|
x.size(0), 1, 1, 1, device=x.device).ge_(self.drop).div(1 - self.drop).detach() |
|
else: |
|
return x + self.m(x) |
|
|
|
|
|
class ConvMlp(torch.nn.Module): |
|
def __init__(self, ed, h): |
|
super().__init__() |
|
self.pw1 = ConvNorm(ed, h) |
|
self.act = torch.nn.ReLU() |
|
self.pw2 = ConvNorm(h, ed, bn_weight_init=0) |
|
|
|
def forward(self, x): |
|
x = self.pw2(self.act(self.pw1(x))) |
|
return x |
|
|
|
|
|
class CascadedGroupAttention(torch.nn.Module): |
|
attention_bias_cache: Dict[str, torch.Tensor] |
|
|
|
r""" Cascaded Group Attention. |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
key_dim (int): The dimension for query and key. |
|
num_heads (int): Number of attention heads. |
|
attn_ratio (int): Multiplier for the query dim for value dimension. |
|
resolution (int): Input resolution, correspond to the window size. |
|
kernels (List[int]): The kernel size of the dw conv on query. |
|
""" |
|
def __init__( |
|
self, |
|
dim, |
|
key_dim, |
|
num_heads=8, |
|
attn_ratio=4, |
|
resolution=14, |
|
kernels=(5, 5, 5, 5), |
|
): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
self.scale = key_dim ** -0.5 |
|
self.key_dim = key_dim |
|
self.val_dim = int(attn_ratio * key_dim) |
|
self.attn_ratio = attn_ratio |
|
|
|
qkvs = [] |
|
dws = [] |
|
for i in range(num_heads): |
|
qkvs.append(ConvNorm(dim // (num_heads), self.key_dim * 2 + self.val_dim)) |
|
dws.append(ConvNorm(self.key_dim, self.key_dim, kernels[i], 1, kernels[i] // 2, groups=self.key_dim)) |
|
self.qkvs = torch.nn.ModuleList(qkvs) |
|
self.dws = torch.nn.ModuleList(dws) |
|
self.proj = torch.nn.Sequential( |
|
torch.nn.ReLU(), |
|
ConvNorm(self.val_dim * num_heads, dim, bn_weight_init=0) |
|
) |
|
|
|
points = list(itertools.product(range(resolution), range(resolution))) |
|
N = len(points) |
|
attention_offsets = {} |
|
idxs = [] |
|
for p1 in points: |
|
for p2 in points: |
|
offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1])) |
|
if offset not in attention_offsets: |
|
attention_offsets[offset] = len(attention_offsets) |
|
idxs.append(attention_offsets[offset]) |
|
self.attention_biases = torch.nn.Parameter(torch.zeros(num_heads, len(attention_offsets))) |
|
self.register_buffer('attention_bias_idxs', torch.LongTensor(idxs).view(N, N), persistent=False) |
|
self.attention_bias_cache = {} |
|
|
|
@torch.no_grad() |
|
def train(self, mode=True): |
|
super().train(mode) |
|
if mode and self.attention_bias_cache: |
|
self.attention_bias_cache = {} |
|
|
|
def get_attention_biases(self, device: torch.device) -> torch.Tensor: |
|
if torch.jit.is_tracing() or self.training: |
|
return self.attention_biases[:, self.attention_bias_idxs] |
|
else: |
|
device_key = str(device) |
|
if device_key not in self.attention_bias_cache: |
|
self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs] |
|
return self.attention_bias_cache[device_key] |
|
|
|
def forward(self, x): |
|
B, C, H, W = x.shape |
|
feats_in = x.chunk(len(self.qkvs), dim=1) |
|
feats_out = [] |
|
feat = feats_in[0] |
|
attn_bias = self.get_attention_biases(x.device) |
|
for head_idx, (qkv, dws) in enumerate(zip(self.qkvs, self.dws)): |
|
if head_idx > 0: |
|
feat = feat + feats_in[head_idx] |
|
feat = qkv(feat) |
|
q, k, v = feat.view(B, -1, H, W).split([self.key_dim, self.key_dim, self.val_dim], dim=1) |
|
q = dws(q) |
|
q, k, v = q.flatten(2), k.flatten(2), v.flatten(2) |
|
q = q * self.scale |
|
attn = q.transpose(-2, -1) @ k |
|
attn = attn + attn_bias[head_idx] |
|
attn = attn.softmax(dim=-1) |
|
feat = v @ attn.transpose(-2, -1) |
|
feat = feat.view(B, self.val_dim, H, W) |
|
feats_out.append(feat) |
|
x = self.proj(torch.cat(feats_out, 1)) |
|
return x |
|
|
|
|
|
class LocalWindowAttention(torch.nn.Module): |
|
r""" Local Window Attention. |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
key_dim (int): The dimension for query and key. |
|
num_heads (int): Number of attention heads. |
|
attn_ratio (int): Multiplier for the query dim for value dimension. |
|
resolution (int): Input resolution. |
|
window_resolution (int): Local window resolution. |
|
kernels (List[int]): The kernel size of the dw conv on query. |
|
""" |
|
def __init__( |
|
self, |
|
dim, |
|
key_dim, |
|
num_heads=8, |
|
attn_ratio=4, |
|
resolution=14, |
|
window_resolution=7, |
|
kernels=(5, 5, 5, 5), |
|
): |
|
super().__init__() |
|
self.dim = dim |
|
self.num_heads = num_heads |
|
self.resolution = resolution |
|
assert window_resolution > 0, 'window_size must be greater than 0' |
|
self.window_resolution = window_resolution |
|
window_resolution = min(window_resolution, resolution) |
|
self.attn = CascadedGroupAttention( |
|
dim, key_dim, num_heads, |
|
attn_ratio=attn_ratio, |
|
resolution=window_resolution, |
|
kernels=kernels, |
|
) |
|
|
|
def forward(self, x): |
|
H = W = self.resolution |
|
B, C, H_, W_ = x.shape |
|
|
|
_assert(H == H_, f'input feature has wrong size, expect {(H, W)}, got {(H_, W_)}') |
|
_assert(W == W_, f'input feature has wrong size, expect {(H, W)}, got {(H_, W_)}') |
|
if H <= self.window_resolution and W <= self.window_resolution: |
|
x = self.attn(x) |
|
else: |
|
x = x.permute(0, 2, 3, 1) |
|
pad_b = (self.window_resolution - H % self.window_resolution) % self.window_resolution |
|
pad_r = (self.window_resolution - W % self.window_resolution) % self.window_resolution |
|
x = torch.nn.functional.pad(x, (0, 0, 0, pad_r, 0, pad_b)) |
|
|
|
pH, pW = H + pad_b, W + pad_r |
|
nH = pH // self.window_resolution |
|
nW = pW // self.window_resolution |
|
|
|
x = x.view(B, nH, self.window_resolution, nW, self.window_resolution, C).transpose(2, 3) |
|
x = x.reshape(B * nH * nW, self.window_resolution, self.window_resolution, C).permute(0, 3, 1, 2) |
|
x = self.attn(x) |
|
|
|
x = x.permute(0, 2, 3, 1).view(B, nH, nW, self.window_resolution, self.window_resolution, C) |
|
x = x.transpose(2, 3).reshape(B, pH, pW, C) |
|
x = x[:, :H, :W].contiguous() |
|
x = x.permute(0, 3, 1, 2) |
|
return x |
|
|
|
|
|
class EfficientVitBlock(torch.nn.Module): |
|
""" A basic EfficientVit building block. |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
key_dim (int): Dimension for query and key in the token mixer. |
|
num_heads (int): Number of attention heads. |
|
attn_ratio (int): Multiplier for the query dim for value dimension. |
|
resolution (int): Input resolution. |
|
window_resolution (int): Local window resolution. |
|
kernels (List[int]): The kernel size of the dw conv on query. |
|
""" |
|
def __init__( |
|
self, |
|
dim, |
|
key_dim, |
|
num_heads=8, |
|
attn_ratio=4, |
|
resolution=14, |
|
window_resolution=7, |
|
kernels=[5, 5, 5, 5], |
|
): |
|
super().__init__() |
|
|
|
self.dw0 = ResidualDrop(ConvNorm(dim, dim, 3, 1, 1, groups=dim, bn_weight_init=0.)) |
|
self.ffn0 = ResidualDrop(ConvMlp(dim, int(dim * 2))) |
|
|
|
self.mixer = ResidualDrop( |
|
LocalWindowAttention( |
|
dim, key_dim, num_heads, |
|
attn_ratio=attn_ratio, |
|
resolution=resolution, |
|
window_resolution=window_resolution, |
|
kernels=kernels, |
|
) |
|
) |
|
|
|
self.dw1 = ResidualDrop(ConvNorm(dim, dim, 3, 1, 1, groups=dim, bn_weight_init=0.)) |
|
self.ffn1 = ResidualDrop(ConvMlp(dim, int(dim * 2))) |
|
|
|
def forward(self, x): |
|
return self.ffn1(self.dw1(self.mixer(self.ffn0(self.dw0(x))))) |
|
|
|
|
|
class EfficientVitStage(torch.nn.Module): |
|
def __init__( |
|
self, |
|
in_dim, |
|
out_dim, |
|
key_dim, |
|
downsample=('', 1), |
|
num_heads=8, |
|
attn_ratio=4, |
|
resolution=14, |
|
window_resolution=7, |
|
kernels=[5, 5, 5, 5], |
|
depth=1, |
|
): |
|
super().__init__() |
|
if downsample[0] == 'subsample': |
|
self.resolution = (resolution - 1) // downsample[1] + 1 |
|
down_blocks = [] |
|
down_blocks.append(( |
|
'res1', |
|
torch.nn.Sequential( |
|
ResidualDrop(ConvNorm(in_dim, in_dim, 3, 1, 1, groups=in_dim)), |
|
ResidualDrop(ConvMlp(in_dim, int(in_dim * 2))), |
|
) |
|
)) |
|
down_blocks.append(('patchmerge', PatchMerging(in_dim, out_dim))) |
|
down_blocks.append(( |
|
'res2', |
|
torch.nn.Sequential( |
|
ResidualDrop(ConvNorm(out_dim, out_dim, 3, 1, 1, groups=out_dim)), |
|
ResidualDrop(ConvMlp(out_dim, int(out_dim * 2))), |
|
) |
|
)) |
|
self.downsample = nn.Sequential(OrderedDict(down_blocks)) |
|
else: |
|
assert in_dim == out_dim |
|
self.downsample = nn.Identity() |
|
self.resolution = resolution |
|
|
|
blocks = [] |
|
for d in range(depth): |
|
blocks.append(EfficientVitBlock(out_dim, key_dim, num_heads, attn_ratio, self.resolution, window_resolution, kernels)) |
|
self.blocks = nn.Sequential(*blocks) |
|
|
|
def forward(self, x): |
|
x = self.downsample(x) |
|
x = self.blocks(x) |
|
return x |
|
|
|
|
|
class PatchEmbedding(torch.nn.Sequential): |
|
def __init__(self, in_chans, dim): |
|
super().__init__() |
|
self.add_module('conv1', ConvNorm(in_chans, dim // 8, 3, 2, 1)) |
|
self.add_module('relu1', torch.nn.ReLU()) |
|
self.add_module('conv2', ConvNorm(dim // 8, dim // 4, 3, 2, 1)) |
|
self.add_module('relu2', torch.nn.ReLU()) |
|
self.add_module('conv3', ConvNorm(dim // 4, dim // 2, 3, 2, 1)) |
|
self.add_module('relu3', torch.nn.ReLU()) |
|
self.add_module('conv4', ConvNorm(dim // 2, dim, 3, 2, 1)) |
|
self.patch_size = 16 |
|
|
|
|
|
class EfficientVitMsra(nn.Module): |
|
def __init__( |
|
self, |
|
img_size=224, |
|
in_chans=3, |
|
num_classes=1000, |
|
embed_dim=(64, 128, 192), |
|
key_dim=(16, 16, 16), |
|
depth=(1, 2, 3), |
|
num_heads=(4, 4, 4), |
|
window_size=(7, 7, 7), |
|
kernels=(5, 5, 5, 5), |
|
down_ops=(('', 1), ('subsample', 2), ('subsample', 2)), |
|
global_pool='avg', |
|
drop_rate=0., |
|
): |
|
super(EfficientVitMsra, self).__init__() |
|
self.grad_checkpointing = False |
|
self.num_classes = num_classes |
|
self.drop_rate = drop_rate |
|
|
|
|
|
self.patch_embed = PatchEmbedding(in_chans, embed_dim[0]) |
|
stride = self.patch_embed.patch_size |
|
resolution = img_size // self.patch_embed.patch_size |
|
attn_ratio = [embed_dim[i] / (key_dim[i] * num_heads[i]) for i in range(len(embed_dim))] |
|
|
|
|
|
self.feature_info = [] |
|
stages = [] |
|
pre_ed = embed_dim[0] |
|
for i, (ed, kd, dpth, nh, ar, wd, do) in enumerate( |
|
zip(embed_dim, key_dim, depth, num_heads, attn_ratio, window_size, down_ops)): |
|
stage = EfficientVitStage( |
|
in_dim=pre_ed, |
|
out_dim=ed, |
|
key_dim=kd, |
|
downsample=do, |
|
num_heads=nh, |
|
attn_ratio=ar, |
|
resolution=resolution, |
|
window_resolution=wd, |
|
kernels=kernels, |
|
depth=dpth, |
|
) |
|
pre_ed = ed |
|
if do[0] == 'subsample' and i != 0: |
|
stride *= do[1] |
|
resolution = stage.resolution |
|
stages.append(stage) |
|
self.feature_info += [dict(num_chs=ed, reduction=stride, module=f'stages.{i}')] |
|
self.stages = nn.Sequential(*stages) |
|
|
|
if global_pool == 'avg': |
|
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool, flatten=True) |
|
else: |
|
assert num_classes == 0 |
|
self.global_pool = nn.Identity() |
|
self.num_features = embed_dim[-1] |
|
self.head = NormLinear( |
|
self.num_features, num_classes, drop=self.drop_rate) if num_classes > 0 else torch.nn.Identity() |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return {x for x in self.state_dict().keys() if 'attention_biases' in x} |
|
|
|
@torch.jit.ignore |
|
def group_matcher(self, coarse=False): |
|
matcher = dict( |
|
stem=r'^patch_embed', |
|
blocks=r'^stages\.(\d+)' if coarse else [ |
|
(r'^stages\.(\d+).downsample', (0,)), |
|
(r'^stages\.(\d+)\.\w+\.(\d+)', None), |
|
] |
|
) |
|
return matcher |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
self.grad_checkpointing = enable |
|
|
|
@torch.jit.ignore |
|
def get_classifier(self): |
|
return self.head.linear |
|
|
|
def reset_classifier(self, num_classes, global_pool=None): |
|
self.num_classes = num_classes |
|
if global_pool is not None: |
|
if global_pool == 'avg': |
|
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool, flatten=True) |
|
else: |
|
assert num_classes == 0 |
|
self.global_pool = nn.Identity() |
|
self.head = NormLinear( |
|
self.num_features, num_classes, drop=self.drop_rate) if num_classes > 0 else torch.nn.Identity() |
|
|
|
def forward_features(self, x): |
|
x = self.patch_embed(x) |
|
if self.grad_checkpointing and not torch.jit.is_scripting(): |
|
x = checkpoint_seq(self.stages, x) |
|
else: |
|
x = self.stages(x) |
|
return x |
|
|
|
def forward_head(self, x, pre_logits: bool = False): |
|
x = self.global_pool(x) |
|
return x if pre_logits else self.head(x) |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
x = self.forward_head(x) |
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 1000, |
|
'mean': IMAGENET_DEFAULT_MEAN, |
|
'std': IMAGENET_DEFAULT_STD, |
|
'first_conv': 'patch_embed.conv1.conv', |
|
'classifier': 'head.linear', |
|
'fixed_input_size': True, |
|
'pool_size': (4, 4), |
|
**kwargs, |
|
} |
|
|
|
|
|
default_cfgs = generate_default_cfgs({ |
|
'efficientvit_m0.r224_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
|
|
), |
|
'efficientvit_m1.r224_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
|
|
), |
|
'efficientvit_m2.r224_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
|
|
), |
|
'efficientvit_m3.r224_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
|
|
), |
|
'efficientvit_m4.r224_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
|
|
), |
|
'efficientvit_m5.r224_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
|
|
), |
|
}) |
|
|
|
|
|
def _create_efficientvit_msra(variant, pretrained=False, **kwargs): |
|
out_indices = kwargs.pop('out_indices', (0, 1, 2)) |
|
model = build_model_with_cfg( |
|
EfficientVitMsra, |
|
variant, |
|
pretrained, |
|
feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), |
|
**kwargs |
|
) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientvit_m0(pretrained=False, **kwargs): |
|
model_args = dict( |
|
img_size=224, |
|
embed_dim=[64, 128, 192], |
|
depth=[1, 2, 3], |
|
num_heads=[4, 4, 4], |
|
window_size=[7, 7, 7], |
|
kernels=[5, 5, 5, 5] |
|
) |
|
return _create_efficientvit_msra('efficientvit_m0', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def efficientvit_m1(pretrained=False, **kwargs): |
|
model_args = dict( |
|
img_size=224, |
|
embed_dim=[128, 144, 192], |
|
depth=[1, 2, 3], |
|
num_heads=[2, 3, 3], |
|
window_size=[7, 7, 7], |
|
kernels=[7, 5, 3, 3] |
|
) |
|
return _create_efficientvit_msra('efficientvit_m1', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def efficientvit_m2(pretrained=False, **kwargs): |
|
model_args = dict( |
|
img_size=224, |
|
embed_dim=[128, 192, 224], |
|
depth=[1, 2, 3], |
|
num_heads=[4, 3, 2], |
|
window_size=[7, 7, 7], |
|
kernels=[7, 5, 3, 3] |
|
) |
|
return _create_efficientvit_msra('efficientvit_m2', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def efficientvit_m3(pretrained=False, **kwargs): |
|
model_args = dict( |
|
img_size=224, |
|
embed_dim=[128, 240, 320], |
|
depth=[1, 2, 3], |
|
num_heads=[4, 3, 4], |
|
window_size=[7, 7, 7], |
|
kernels=[5, 5, 5, 5] |
|
) |
|
return _create_efficientvit_msra('efficientvit_m3', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def efficientvit_m4(pretrained=False, **kwargs): |
|
model_args = dict( |
|
img_size=224, |
|
embed_dim=[128, 256, 384], |
|
depth=[1, 2, 3], |
|
num_heads=[4, 4, 4], |
|
window_size=[7, 7, 7], |
|
kernels=[7, 5, 3, 3] |
|
) |
|
return _create_efficientvit_msra('efficientvit_m4', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def efficientvit_m5(pretrained=False, **kwargs): |
|
model_args = dict( |
|
img_size=224, |
|
embed_dim=[192, 288, 384], |
|
depth=[1, 3, 4], |
|
num_heads=[3, 3, 4], |
|
window_size=[7, 7, 7], |
|
kernels=[7, 5, 3, 3] |
|
) |
|
return _create_efficientvit_msra('efficientvit_m5', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|