pengdadaaa's picture
Upload 741 files
786f6a6 verified
raw
history blame
18.6 kB
""" Deep Layer Aggregation and DLA w/ Res2Net
DLA original adapted from Official Pytorch impl at: https://github.com/ucbdrive/dla
DLA Paper: `Deep Layer Aggregation` - https://arxiv.org/abs/1707.06484
Res2Net additions from: https://github.com/gasvn/Res2Net/
Res2Net Paper: `Res2Net: A New Multi-scale Backbone Architecture` - https://arxiv.org/abs/1904.01169
"""
import math
from typing import List, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import create_classifier
from ._builder import build_model_with_cfg
from ._registry import register_model, generate_default_cfgs
__all__ = ['DLA']
class DlaBasic(nn.Module):
"""DLA Basic"""
def __init__(self, inplanes, planes, stride=1, dilation=1, **_):
super(DlaBasic, self).__init__()
self.conv1 = nn.Conv2d(
inplanes, planes, kernel_size=3,
stride=stride, padding=dilation, bias=False, dilation=dilation)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(
planes, planes, kernel_size=3,
stride=1, padding=dilation, bias=False, dilation=dilation)
self.bn2 = nn.BatchNorm2d(planes)
self.stride = stride
def forward(self, x, shortcut: Optional[torch.Tensor] = None, children: Optional[List[torch.Tensor]] = None):
if shortcut is None:
shortcut = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out += shortcut
out = self.relu(out)
return out
class DlaBottleneck(nn.Module):
"""DLA/DLA-X Bottleneck"""
expansion = 2
def __init__(self, inplanes, outplanes, stride=1, dilation=1, cardinality=1, base_width=64):
super(DlaBottleneck, self).__init__()
self.stride = stride
mid_planes = int(math.floor(outplanes * (base_width / 64)) * cardinality)
mid_planes = mid_planes // self.expansion
self.conv1 = nn.Conv2d(inplanes, mid_planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(mid_planes)
self.conv2 = nn.Conv2d(
mid_planes, mid_planes, kernel_size=3,
stride=stride, padding=dilation, bias=False, dilation=dilation, groups=cardinality)
self.bn2 = nn.BatchNorm2d(mid_planes)
self.conv3 = nn.Conv2d(mid_planes, outplanes, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(outplanes)
self.relu = nn.ReLU(inplace=True)
def forward(self, x, shortcut: Optional[torch.Tensor] = None, children: Optional[List[torch.Tensor]] = None):
if shortcut is None:
shortcut = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
out += shortcut
out = self.relu(out)
return out
class DlaBottle2neck(nn.Module):
""" Res2Net/Res2NeXT DLA Bottleneck
Adapted from https://github.com/gasvn/Res2Net/blob/master/dla.py
"""
expansion = 2
def __init__(self, inplanes, outplanes, stride=1, dilation=1, scale=4, cardinality=8, base_width=4):
super(DlaBottle2neck, self).__init__()
self.is_first = stride > 1
self.scale = scale
mid_planes = int(math.floor(outplanes * (base_width / 64)) * cardinality)
mid_planes = mid_planes // self.expansion
self.width = mid_planes
self.conv1 = nn.Conv2d(inplanes, mid_planes * scale, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(mid_planes * scale)
num_scale_convs = max(1, scale - 1)
convs = []
bns = []
for _ in range(num_scale_convs):
convs.append(nn.Conv2d(
mid_planes, mid_planes, kernel_size=3,
stride=stride, padding=dilation, dilation=dilation, groups=cardinality, bias=False))
bns.append(nn.BatchNorm2d(mid_planes))
self.convs = nn.ModuleList(convs)
self.bns = nn.ModuleList(bns)
self.pool = nn.AvgPool2d(kernel_size=3, stride=stride, padding=1) if self.is_first else None
self.conv3 = nn.Conv2d(mid_planes * scale, outplanes, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(outplanes)
self.relu = nn.ReLU(inplace=True)
def forward(self, x, shortcut: Optional[torch.Tensor] = None, children: Optional[List[torch.Tensor]] = None):
if shortcut is None:
shortcut = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
spx = torch.split(out, self.width, 1)
spo = []
sp = spx[0] # redundant, for torchscript
for i, (conv, bn) in enumerate(zip(self.convs, self.bns)):
if i == 0 or self.is_first:
sp = spx[i]
else:
sp = sp + spx[i]
sp = conv(sp)
sp = bn(sp)
sp = self.relu(sp)
spo.append(sp)
if self.scale > 1:
if self.pool is not None: # self.is_first == True, None check for torchscript
spo.append(self.pool(spx[-1]))
else:
spo.append(spx[-1])
out = torch.cat(spo, 1)
out = self.conv3(out)
out = self.bn3(out)
out += shortcut
out = self.relu(out)
return out
class DlaRoot(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, shortcut):
super(DlaRoot, self).__init__()
self.conv = nn.Conv2d(
in_channels, out_channels, 1, stride=1, bias=False, padding=(kernel_size - 1) // 2)
self.bn = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.shortcut = shortcut
def forward(self, x_children: List[torch.Tensor]):
x = self.conv(torch.cat(x_children, 1))
x = self.bn(x)
if self.shortcut:
x += x_children[0]
x = self.relu(x)
return x
class DlaTree(nn.Module):
def __init__(
self,
levels,
block,
in_channels,
out_channels,
stride=1,
dilation=1,
cardinality=1,
base_width=64,
level_root=False,
root_dim=0,
root_kernel_size=1,
root_shortcut=False,
):
super(DlaTree, self).__init__()
if root_dim == 0:
root_dim = 2 * out_channels
if level_root:
root_dim += in_channels
self.downsample = nn.MaxPool2d(stride, stride=stride) if stride > 1 else nn.Identity()
self.project = nn.Identity()
cargs = dict(dilation=dilation, cardinality=cardinality, base_width=base_width)
if levels == 1:
self.tree1 = block(in_channels, out_channels, stride, **cargs)
self.tree2 = block(out_channels, out_channels, 1, **cargs)
if in_channels != out_channels:
# NOTE the official impl/weights have project layers in levels > 1 case that are never
# used, I've moved the project layer here to avoid wasted params but old checkpoints will
# need strict=False while loading.
self.project = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, bias=False),
nn.BatchNorm2d(out_channels))
self.root = DlaRoot(root_dim, out_channels, root_kernel_size, root_shortcut)
else:
cargs.update(dict(root_kernel_size=root_kernel_size, root_shortcut=root_shortcut))
self.tree1 = DlaTree(
levels - 1,
block,
in_channels,
out_channels,
stride,
root_dim=0,
**cargs,
)
self.tree2 = DlaTree(
levels - 1,
block,
out_channels,
out_channels,
root_dim=root_dim + out_channels,
**cargs,
)
self.root = None
self.level_root = level_root
self.root_dim = root_dim
self.levels = levels
def forward(self, x, shortcut: Optional[torch.Tensor] = None, children: Optional[List[torch.Tensor]] = None):
if children is None:
children = []
bottom = self.downsample(x)
shortcut = self.project(bottom)
if self.level_root:
children.append(bottom)
x1 = self.tree1(x, shortcut)
if self.root is not None: # levels == 1
x2 = self.tree2(x1)
x = self.root([x2, x1] + children)
else:
children.append(x1)
x = self.tree2(x1, None, children)
return x
class DLA(nn.Module):
def __init__(
self,
levels,
channels,
output_stride=32,
num_classes=1000,
in_chans=3,
global_pool='avg',
cardinality=1,
base_width=64,
block=DlaBottle2neck,
shortcut_root=False,
drop_rate=0.0,
):
super(DLA, self).__init__()
self.channels = channels
self.num_classes = num_classes
self.cardinality = cardinality
self.base_width = base_width
assert output_stride == 32 # FIXME support dilation
self.base_layer = nn.Sequential(
nn.Conv2d(in_chans, channels[0], kernel_size=7, stride=1, padding=3, bias=False),
nn.BatchNorm2d(channels[0]),
nn.ReLU(inplace=True),
)
self.level0 = self._make_conv_level(channels[0], channels[0], levels[0])
self.level1 = self._make_conv_level(channels[0], channels[1], levels[1], stride=2)
cargs = dict(cardinality=cardinality, base_width=base_width, root_shortcut=shortcut_root)
self.level2 = DlaTree(levels[2], block, channels[1], channels[2], 2, level_root=False, **cargs)
self.level3 = DlaTree(levels[3], block, channels[2], channels[3], 2, level_root=True, **cargs)
self.level4 = DlaTree(levels[4], block, channels[3], channels[4], 2, level_root=True, **cargs)
self.level5 = DlaTree(levels[5], block, channels[4], channels[5], 2, level_root=True, **cargs)
self.feature_info = [
dict(num_chs=channels[0], reduction=1, module='level0'), # rare to have a meaningful stride 1 level
dict(num_chs=channels[1], reduction=2, module='level1'),
dict(num_chs=channels[2], reduction=4, module='level2'),
dict(num_chs=channels[3], reduction=8, module='level3'),
dict(num_chs=channels[4], reduction=16, module='level4'),
dict(num_chs=channels[5], reduction=32, module='level5'),
]
self.num_features = channels[-1]
self.global_pool, self.head_drop, self.fc = create_classifier(
self.num_features,
self.num_classes,
pool_type=global_pool,
use_conv=True,
drop_rate=drop_rate,
)
self.flatten = nn.Flatten(1) if global_pool else nn.Identity()
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_conv_level(self, inplanes, planes, convs, stride=1, dilation=1):
modules = []
for i in range(convs):
modules.extend([
nn.Conv2d(
inplanes, planes, kernel_size=3,
stride=stride if i == 0 else 1,
padding=dilation, bias=False, dilation=dilation),
nn.BatchNorm2d(planes),
nn.ReLU(inplace=True)])
inplanes = planes
return nn.Sequential(*modules)
@torch.jit.ignore
def group_matcher(self, coarse=False):
matcher = dict(
stem=r'^base_layer',
blocks=r'^level(\d+)' if coarse else [
# an unusual arch, this achieves somewhat more granularity without getting super messy
(r'^level(\d+)\.tree(\d+)', None),
(r'^level(\d+)\.root', (2,)),
(r'^level(\d+)', (1,))
]
)
return matcher
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
assert not enable, 'gradient checkpointing not supported'
@torch.jit.ignore
def get_classifier(self):
return self.fc
def reset_classifier(self, num_classes, global_pool='avg'):
self.num_classes = num_classes
self.global_pool, self.fc = create_classifier(
self.num_features, self.num_classes, pool_type=global_pool, use_conv=True)
self.flatten = nn.Flatten(1) if global_pool else nn.Identity()
def forward_features(self, x):
x = self.base_layer(x)
x = self.level0(x)
x = self.level1(x)
x = self.level2(x)
x = self.level3(x)
x = self.level4(x)
x = self.level5(x)
return x
def forward_head(self, x, pre_logits: bool = False):
x = self.global_pool(x)
x = self.head_drop(x)
if pre_logits:
return self.flatten(x)
x = self.fc(x)
return self.flatten(x)
def forward(self, x):
x = self.forward_features(x)
x = self.forward_head(x)
return x
def _create_dla(variant, pretrained=False, **kwargs):
return build_model_with_cfg(
DLA,
variant,
pretrained,
pretrained_strict=False,
feature_cfg=dict(out_indices=(1, 2, 3, 4, 5)),
**kwargs,
)
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
'crop_pct': 0.875, 'interpolation': 'bilinear',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'base_layer.0', 'classifier': 'fc',
**kwargs
}
default_cfgs = generate_default_cfgs({
'dla34.in1k': _cfg(hf_hub_id='timm/'),
'dla46_c.in1k': _cfg(hf_hub_id='timm/'),
'dla46x_c.in1k': _cfg(hf_hub_id='timm/'),
'dla60x_c.in1k': _cfg(hf_hub_id='timm/'),
'dla60.in1k': _cfg(hf_hub_id='timm/'),
'dla60x.in1k': _cfg(hf_hub_id='timm/'),
'dla102.in1k': _cfg(hf_hub_id='timm/'),
'dla102x.in1k': _cfg(hf_hub_id='timm/'),
'dla102x2.in1k': _cfg(hf_hub_id='timm/'),
'dla169.in1k': _cfg(hf_hub_id='timm/'),
'dla60_res2net.in1k': _cfg(hf_hub_id='timm/'),
'dla60_res2next.in1k': _cfg(hf_hub_id='timm/'),
})
@register_model
def dla60_res2net(pretrained=False, **kwargs) -> DLA:
model_args = dict(
levels=(1, 1, 1, 2, 3, 1), channels=(16, 32, 128, 256, 512, 1024),
block=DlaBottle2neck, cardinality=1, base_width=28)
return _create_dla('dla60_res2net', pretrained, **dict(model_args, **kwargs))
@register_model
def dla60_res2next(pretrained=False,**kwargs):
model_args = dict(
levels=(1, 1, 1, 2, 3, 1), channels=(16, 32, 128, 256, 512, 1024),
block=DlaBottle2neck, cardinality=8, base_width=4)
return _create_dla('dla60_res2next', pretrained, **dict(model_args, **kwargs))
@register_model
def dla34(pretrained=False, **kwargs) -> DLA: # DLA-34
model_args = dict(
levels=[1, 1, 1, 2, 2, 1], channels=[16, 32, 64, 128, 256, 512], block=DlaBasic)
return _create_dla('dla34', pretrained, **dict(model_args, **kwargs))
@register_model
def dla46_c(pretrained=False, **kwargs) -> DLA: # DLA-46-C
model_args = dict(
levels=[1, 1, 1, 2, 2, 1], channels=[16, 32, 64, 64, 128, 256], block=DlaBottleneck)
return _create_dla('dla46_c', pretrained, **dict(model_args, **kwargs))
@register_model
def dla46x_c(pretrained=False, **kwargs) -> DLA: # DLA-X-46-C
model_args = dict(
levels=[1, 1, 1, 2, 2, 1], channels=[16, 32, 64, 64, 128, 256],
block=DlaBottleneck, cardinality=32, base_width=4)
return _create_dla('dla46x_c', pretrained, **dict(model_args, **kwargs))
@register_model
def dla60x_c(pretrained=False, **kwargs) -> DLA: # DLA-X-60-C
model_args = dict(
levels=[1, 1, 1, 2, 3, 1], channels=[16, 32, 64, 64, 128, 256],
block=DlaBottleneck, cardinality=32, base_width=4)
return _create_dla('dla60x_c', pretrained, **dict(model_args, **kwargs))
@register_model
def dla60(pretrained=False, **kwargs) -> DLA: # DLA-60
model_args = dict(
levels=[1, 1, 1, 2, 3, 1], channels=[16, 32, 128, 256, 512, 1024],
block=DlaBottleneck)
return _create_dla('dla60', pretrained, **dict(model_args, **kwargs))
@register_model
def dla60x(pretrained=False, **kwargs) -> DLA: # DLA-X-60
model_args = dict(
levels=[1, 1, 1, 2, 3, 1], channels=[16, 32, 128, 256, 512, 1024],
block=DlaBottleneck, cardinality=32, base_width=4)
return _create_dla('dla60x', pretrained, **dict(model_args, **kwargs))
@register_model
def dla102(pretrained=False, **kwargs) -> DLA: # DLA-102
model_args = dict(
levels=[1, 1, 1, 3, 4, 1], channels=[16, 32, 128, 256, 512, 1024],
block=DlaBottleneck, shortcut_root=True)
return _create_dla('dla102', pretrained, **dict(model_args, **kwargs))
@register_model
def dla102x(pretrained=False, **kwargs) -> DLA: # DLA-X-102
model_args = dict(
levels=[1, 1, 1, 3, 4, 1], channels=[16, 32, 128, 256, 512, 1024],
block=DlaBottleneck, cardinality=32, base_width=4, shortcut_root=True)
return _create_dla('dla102x', pretrained, **dict(model_args, **kwargs))
@register_model
def dla102x2(pretrained=False, **kwargs) -> DLA: # DLA-X-102 64
model_args = dict(
levels=[1, 1, 1, 3, 4, 1], channels=[16, 32, 128, 256, 512, 1024],
block=DlaBottleneck, cardinality=64, base_width=4, shortcut_root=True)
return _create_dla('dla102x2', pretrained, **dict(model_args, **kwargs))
@register_model
def dla169(pretrained=False, **kwargs) -> DLA: # DLA-169
model_args = dict(
levels=[1, 1, 2, 3, 5, 1], channels=[16, 32, 128, 256, 512, 1024],
block=DlaBottleneck, shortcut_root=True)
return _create_dla('dla169', pretrained, **dict(model_args, **kwargs))