|
""" Conv2d + BN + Act |
|
|
|
Hacked together by / Copyright 2020 Ross Wightman |
|
""" |
|
import functools |
|
from torch import nn as nn |
|
|
|
from .create_conv2d import create_conv2d |
|
from .create_norm_act import get_norm_act_layer |
|
|
|
|
|
class ConvNormAct(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding='', |
|
dilation=1, |
|
groups=1, |
|
bias=False, |
|
apply_act=True, |
|
norm_layer=nn.BatchNorm2d, |
|
norm_kwargs=None, |
|
act_layer=nn.ReLU, |
|
act_kwargs=None, |
|
drop_layer=None, |
|
): |
|
super(ConvNormAct, self).__init__() |
|
norm_kwargs = norm_kwargs or {} |
|
act_kwargs = act_kwargs or {} |
|
|
|
self.conv = create_conv2d( |
|
in_channels, out_channels, kernel_size, stride=stride, |
|
padding=padding, dilation=dilation, groups=groups, bias=bias) |
|
|
|
|
|
norm_act_layer = get_norm_act_layer(norm_layer, act_layer) |
|
|
|
if drop_layer: |
|
norm_kwargs['drop_layer'] = drop_layer |
|
self.bn = norm_act_layer( |
|
out_channels, |
|
apply_act=apply_act, |
|
act_kwargs=act_kwargs, |
|
**norm_kwargs, |
|
) |
|
|
|
@property |
|
def in_channels(self): |
|
return self.conv.in_channels |
|
|
|
@property |
|
def out_channels(self): |
|
return self.conv.out_channels |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
x = self.bn(x) |
|
return x |
|
|
|
|
|
ConvBnAct = ConvNormAct |
|
|
|
|
|
def create_aa(aa_layer, channels, stride=2, enable=True): |
|
if not aa_layer or not enable: |
|
return nn.Identity() |
|
if isinstance(aa_layer, functools.partial): |
|
if issubclass(aa_layer.func, nn.AvgPool2d): |
|
return aa_layer() |
|
else: |
|
return aa_layer(channels) |
|
elif issubclass(aa_layer, nn.AvgPool2d): |
|
return aa_layer(stride) |
|
else: |
|
return aa_layer(channels=channels, stride=stride) |
|
|
|
|
|
class ConvNormActAa(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding='', |
|
dilation=1, |
|
groups=1, |
|
bias=False, |
|
apply_act=True, |
|
norm_layer=nn.BatchNorm2d, |
|
norm_kwargs=None, |
|
act_layer=nn.ReLU, |
|
act_kwargs=None, |
|
aa_layer=None, |
|
drop_layer=None, |
|
): |
|
super(ConvNormActAa, self).__init__() |
|
use_aa = aa_layer is not None and stride == 2 |
|
norm_kwargs = norm_kwargs or {} |
|
act_kwargs = act_kwargs or {} |
|
|
|
self.conv = create_conv2d( |
|
in_channels, out_channels, kernel_size, stride=1 if use_aa else stride, |
|
padding=padding, dilation=dilation, groups=groups, bias=bias) |
|
|
|
|
|
norm_act_layer = get_norm_act_layer(norm_layer, act_layer) |
|
|
|
if drop_layer: |
|
norm_kwargs['drop_layer'] = drop_layer |
|
self.bn = norm_act_layer(out_channels, apply_act=apply_act, act_kwargs=act_kwargs, **norm_kwargs) |
|
self.aa = create_aa(aa_layer, out_channels, stride=stride, enable=use_aa) |
|
|
|
@property |
|
def in_channels(self): |
|
return self.conv.in_channels |
|
|
|
@property |
|
def out_channels(self): |
|
return self.conv.out_channels |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
x = self.bn(x) |
|
x = self.aa(x) |
|
return x |
|
|