pengdadaaa's picture
Upload 741 files
786f6a6 verified
raw
history blame
6.31 kB
""" PyTorch selectable adaptive pooling
Adaptive pooling with the ability to select the type of pooling from:
* 'avg' - Average pooling
* 'max' - Max pooling
* 'avgmax' - Sum of average and max pooling re-scaled by 0.5
* 'avgmaxc' - Concatenation of average and max pooling along feature dim, doubles feature dim
Both a functional and a nn.Module version of the pooling is provided.
Hacked together by / Copyright 2020 Ross Wightman
"""
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from .format import get_spatial_dim, get_channel_dim
_int_tuple_2_t = Union[int, Tuple[int, int]]
def adaptive_pool_feat_mult(pool_type='avg'):
if pool_type.endswith('catavgmax'):
return 2
else:
return 1
def adaptive_avgmax_pool2d(x, output_size: _int_tuple_2_t = 1):
x_avg = F.adaptive_avg_pool2d(x, output_size)
x_max = F.adaptive_max_pool2d(x, output_size)
return 0.5 * (x_avg + x_max)
def adaptive_catavgmax_pool2d(x, output_size: _int_tuple_2_t = 1):
x_avg = F.adaptive_avg_pool2d(x, output_size)
x_max = F.adaptive_max_pool2d(x, output_size)
return torch.cat((x_avg, x_max), 1)
def select_adaptive_pool2d(x, pool_type='avg', output_size: _int_tuple_2_t = 1):
"""Selectable global pooling function with dynamic input kernel size
"""
if pool_type == 'avg':
x = F.adaptive_avg_pool2d(x, output_size)
elif pool_type == 'avgmax':
x = adaptive_avgmax_pool2d(x, output_size)
elif pool_type == 'catavgmax':
x = adaptive_catavgmax_pool2d(x, output_size)
elif pool_type == 'max':
x = F.adaptive_max_pool2d(x, output_size)
else:
assert False, 'Invalid pool type: %s' % pool_type
return x
class FastAdaptiveAvgPool(nn.Module):
def __init__(self, flatten: bool = False, input_fmt: F = 'NCHW'):
super(FastAdaptiveAvgPool, self).__init__()
self.flatten = flatten
self.dim = get_spatial_dim(input_fmt)
def forward(self, x):
return x.mean(self.dim, keepdim=not self.flatten)
class FastAdaptiveMaxPool(nn.Module):
def __init__(self, flatten: bool = False, input_fmt: str = 'NCHW'):
super(FastAdaptiveMaxPool, self).__init__()
self.flatten = flatten
self.dim = get_spatial_dim(input_fmt)
def forward(self, x):
return x.amax(self.dim, keepdim=not self.flatten)
class FastAdaptiveAvgMaxPool(nn.Module):
def __init__(self, flatten: bool = False, input_fmt: str = 'NCHW'):
super(FastAdaptiveAvgMaxPool, self).__init__()
self.flatten = flatten
self.dim = get_spatial_dim(input_fmt)
def forward(self, x):
x_avg = x.mean(self.dim, keepdim=not self.flatten)
x_max = x.amax(self.dim, keepdim=not self.flatten)
return 0.5 * x_avg + 0.5 * x_max
class FastAdaptiveCatAvgMaxPool(nn.Module):
def __init__(self, flatten: bool = False, input_fmt: str = 'NCHW'):
super(FastAdaptiveCatAvgMaxPool, self).__init__()
self.flatten = flatten
self.dim_reduce = get_spatial_dim(input_fmt)
if flatten:
self.dim_cat = 1
else:
self.dim_cat = get_channel_dim(input_fmt)
def forward(self, x):
x_avg = x.mean(self.dim_reduce, keepdim=not self.flatten)
x_max = x.amax(self.dim_reduce, keepdim=not self.flatten)
return torch.cat((x_avg, x_max), self.dim_cat)
class AdaptiveAvgMaxPool2d(nn.Module):
def __init__(self, output_size: _int_tuple_2_t = 1):
super(AdaptiveAvgMaxPool2d, self).__init__()
self.output_size = output_size
def forward(self, x):
return adaptive_avgmax_pool2d(x, self.output_size)
class AdaptiveCatAvgMaxPool2d(nn.Module):
def __init__(self, output_size: _int_tuple_2_t = 1):
super(AdaptiveCatAvgMaxPool2d, self).__init__()
self.output_size = output_size
def forward(self, x):
return adaptive_catavgmax_pool2d(x, self.output_size)
class SelectAdaptivePool2d(nn.Module):
"""Selectable global pooling layer with dynamic input kernel size
"""
def __init__(
self,
output_size: _int_tuple_2_t = 1,
pool_type: str = 'fast',
flatten: bool = False,
input_fmt: str = 'NCHW',
):
super(SelectAdaptivePool2d, self).__init__()
assert input_fmt in ('NCHW', 'NHWC')
self.pool_type = pool_type or '' # convert other falsy values to empty string for consistent TS typing
if not pool_type:
self.pool = nn.Identity() # pass through
self.flatten = nn.Flatten(1) if flatten else nn.Identity()
elif pool_type.startswith('fast') or input_fmt != 'NCHW':
assert output_size == 1, 'Fast pooling and non NCHW input formats require output_size == 1.'
if pool_type.endswith('catavgmax'):
self.pool = FastAdaptiveCatAvgMaxPool(flatten, input_fmt=input_fmt)
elif pool_type.endswith('avgmax'):
self.pool = FastAdaptiveAvgMaxPool(flatten, input_fmt=input_fmt)
elif pool_type.endswith('max'):
self.pool = FastAdaptiveMaxPool(flatten, input_fmt=input_fmt)
else:
self.pool = FastAdaptiveAvgPool(flatten, input_fmt=input_fmt)
self.flatten = nn.Identity()
else:
assert input_fmt == 'NCHW'
if pool_type == 'avgmax':
self.pool = AdaptiveAvgMaxPool2d(output_size)
elif pool_type == 'catavgmax':
self.pool = AdaptiveCatAvgMaxPool2d(output_size)
elif pool_type == 'max':
self.pool = nn.AdaptiveMaxPool2d(output_size)
else:
self.pool = nn.AdaptiveAvgPool2d(output_size)
self.flatten = nn.Flatten(1) if flatten else nn.Identity()
def is_identity(self):
return not self.pool_type
def forward(self, x):
x = self.pool(x)
x = self.flatten(x)
return x
def feat_mult(self):
return adaptive_pool_feat_mult(self.pool_type)
def __repr__(self):
return self.__class__.__name__ + '(' \
+ 'pool_type=' + self.pool_type \
+ ', flatten=' + str(self.flatten) + ')'