pengdadaaa's picture
Upload 741 files
786f6a6 verified
raw
history blame
4.92 kB
# CSP-DarkNet
**CSPDarknet53** is a convolutional neural network and backbone for object detection that uses [DarkNet-53](https://paperswithcode.com/method/darknet-53). It employs a CSPNet strategy to partition the feature map of the base layer into two parts and then merges them through a cross-stage hierarchy. The use of a split and merge strategy allows for more gradient flow through the network.
This CNN is used as the backbone for [YOLOv4](https://paperswithcode.com/method/yolov4).
## How do I use this model on an image?
To load a pretrained model:
```py
>>> import timm
>>> model = timm.create_model('cspdarknet53', pretrained=True)
>>> model.eval()
```
To load and preprocess the image:
```py
>>> import urllib
>>> from PIL import Image
>>> from timm.data import resolve_data_config
>>> from timm.data.transforms_factory import create_transform
>>> config = resolve_data_config({}, model=model)
>>> transform = create_transform(**config)
>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
>>> urllib.request.urlretrieve(url, filename)
>>> img = Image.open(filename).convert('RGB')
>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension
```
To get the model predictions:
```py
>>> import torch
>>> with torch.no_grad():
... out = model(tensor)
>>> probabilities = torch.nn.functional.softmax(out[0], dim=0)
>>> print(probabilities.shape)
>>> # prints: torch.Size([1000])
```
To get the top-5 predictions class names:
```py
>>> # Get imagenet class mappings
>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
>>> urllib.request.urlretrieve(url, filename)
>>> with open("imagenet_classes.txt", "r") as f:
... categories = [s.strip() for s in f.readlines()]
>>> # Print top categories per image
>>> top5_prob, top5_catid = torch.topk(probabilities, 5)
>>> for i in range(top5_prob.size(0)):
... print(categories[top5_catid[i]], top5_prob[i].item())
>>> # prints class names and probabilities like:
>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
```
Replace the model name with the variant you want to use, e.g. `cspdarknet53`. You can find the IDs in the model summaries at the top of this page.
To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use.
## How do I finetune this model?
You can finetune any of the pre-trained models just by changing the classifier (the last layer).
```py
>>> model = timm.create_model('cspdarknet53', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
```
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.
## How do I train this model?
You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
## Citation
```BibTeX
@misc{bochkovskiy2020yolov4,
title={YOLOv4: Optimal Speed and Accuracy of Object Detection},
author={Alexey Bochkovskiy and Chien-Yao Wang and Hong-Yuan Mark Liao},
year={2020},
eprint={2004.10934},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
<!--
Type: model-index
Collections:
- Name: CSP DarkNet
Paper:
Title: 'YOLOv4: Optimal Speed and Accuracy of Object Detection'
URL: https://paperswithcode.com/paper/yolov4-optimal-speed-and-accuracy-of-object
Models:
- Name: cspdarknet53
In Collection: CSP DarkNet
Metadata:
FLOPs: 8545018880
Parameters: 27640000
File Size: 110775135
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Global Average Pooling
- Mish
- Residual Connection
- Softmax
Tasks:
- Image Classification
Training Techniques:
- CutMix
- Label Smoothing
- Mosaic
- Polynomial Learning Rate Decay
- SGD with Momentum
- Self-Adversarial Training
- Weight Decay
Training Data:
- ImageNet
Training Resources: 1x NVIDIA RTX 2070 GPU
ID: cspdarknet53
LR: 0.1
Layers: 53
Crop Pct: '0.887'
Momentum: 0.9
Batch Size: 128
Image Size: '256'
Warmup Steps: 1000
Weight Decay: 0.0005
Interpolation: bilinear
Training Steps: 8000000
FPS (GPU RTX 2070): 66
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/cspnet.py#L441
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspdarknet53_ra_256-d05c7c21.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 80.05%
Top 5 Accuracy: 95.09%
-->