File size: 1,737 Bytes
786f6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
""" Median Pool
Hacked together by / Copyright 2020 Ross Wightman
"""
import torch.nn as nn
import torch.nn.functional as F
from .helpers import to_2tuple, to_4tuple


class MedianPool2d(nn.Module):
    """ Median pool (usable as median filter when stride=1) module.

    Args:
         kernel_size: size of pooling kernel, int or 2-tuple
         stride: pool stride, int or 2-tuple
         padding: pool padding, int or 4-tuple (l, r, t, b) as in pytorch F.pad
         same: override padding and enforce same padding, boolean
    """
    def __init__(self, kernel_size=3, stride=1, padding=0, same=False):
        super(MedianPool2d, self).__init__()
        self.k = to_2tuple(kernel_size)
        self.stride = to_2tuple(stride)
        self.padding = to_4tuple(padding)  # convert to l, r, t, b
        self.same = same

    def _padding(self, x):
        if self.same:
            ih, iw = x.size()[2:]
            if ih % self.stride[0] == 0:
                ph = max(self.k[0] - self.stride[0], 0)
            else:
                ph = max(self.k[0] - (ih % self.stride[0]), 0)
            if iw % self.stride[1] == 0:
                pw = max(self.k[1] - self.stride[1], 0)
            else:
                pw = max(self.k[1] - (iw % self.stride[1]), 0)
            pl = pw // 2
            pr = pw - pl
            pt = ph // 2
            pb = ph - pt
            padding = (pl, pr, pt, pb)
        else:
            padding = self.padding
        return padding

    def forward(self, x):
        x = F.pad(x, self._padding(x), mode='reflect')
        x = x.unfold(2, self.k[0], self.stride[0]).unfold(3, self.k[1], self.stride[1])
        x = x.contiguous().view(x.size()[:4] + (-1,)).median(dim=-1)[0]
        return x