File size: 3,458 Bytes
786f6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
from typing import Optional

import torch
import torch.nn as nn
import torch.nn.functional as F

from .config import use_fused_attn
from .mlp import Mlp
from .weight_init import trunc_normal_tf_


class AttentionPoolLatent(nn.Module):
    """ Attention pooling w/ latent query
    """
    fused_attn: torch.jit.Final[bool]

    def __init__(
            self,
            in_features: int,
            out_features: int = None,
            embed_dim: int = None,
            num_heads: int = 8,
            mlp_ratio: float = 4.0,
            qkv_bias: bool = True,
            qk_norm: bool = False,
            latent_len: int = 1,
            latent_dim: int = None,
            pos_embed: str = '',
            pool_type: str = 'token',
            norm_layer: Optional[nn.Module] = None,
            drop: float = 0.0,
    ):
        super().__init__()
        embed_dim = embed_dim or in_features
        out_features = out_features or in_features
        assert embed_dim % num_heads == 0
        self.num_heads = num_heads
        self.head_dim = embed_dim // num_heads
        self.scale = self.head_dim ** -0.5
        self.pool = pool_type
        self.fused_attn = use_fused_attn()

        if pos_embed == 'abs':
            spatial_len = self.feat_size
            self.pos_embed = nn.Parameter(torch.zeros(spatial_len, in_features))
        else:
            self.pos_embed = None

        self.latent_dim = latent_dim or embed_dim
        self.latent_len = latent_len
        self.latent = nn.Parameter(torch.zeros(1, self.latent_len, embed_dim))

        self.q = nn.Linear(embed_dim, embed_dim, bias=qkv_bias)
        self.kv = nn.Linear(embed_dim, embed_dim * 2, bias=qkv_bias)
        self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
        self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
        self.proj = nn.Linear(embed_dim, embed_dim)
        self.proj_drop = nn.Dropout(drop)

        self.norm = norm_layer(out_features) if norm_layer is not None else nn.Identity()
        self.mlp = Mlp(embed_dim, int(embed_dim * mlp_ratio))

        self.init_weights()

    def init_weights(self):
        if self.pos_embed is not None:
            trunc_normal_tf_(self.pos_embed, std=self.pos_embed.shape[1] ** -0.5)
        trunc_normal_tf_(self.latent, std=self.latent_dim ** -0.5)

    def forward(self, x):
        B, N, C = x.shape

        if self.pos_embed is not None:
            # FIXME interpolate
            x = x + self.pos_embed.unsqueeze(0).to(x.dtype)

        q_latent = self.latent.expand(B, -1, -1)
        q = self.q(q_latent).reshape(B, self.latent_len, self.num_heads, self.head_dim).transpose(1, 2)

        kv = self.kv(x).reshape(B, N, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
        k, v = kv.unbind(0)

        q, k = self.q_norm(q), self.k_norm(k)

        if self.fused_attn:
            x = F.scaled_dot_product_attention(q, k, v)
        else:
            q = q * self.scale
            attn = q @ k.transpose(-2, -1)
            attn = attn.softmax(dim=-1)
            x = attn @ v
        x = x.transpose(1, 2).reshape(B, self.latent_len, C)
        x = self.proj(x)
        x = self.proj_drop(x)

        x = x + self.mlp(self.norm(x))

        # optional pool if latent seq_len > 1 and pooled output is desired
        if self.pool == 'token':
            x = x[:, 0]
        elif self.pool == 'avg':
            x = x.mean(1)
        return x