File size: 5,886 Bytes
786f6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
""" Activations (memory-efficient w/ custom autograd)

A collection of activations fn and modules with a common interface so that they can
easily be swapped. All have an `inplace` arg even if not used.

These activations are not compatible with jit scripting or ONNX export of the model, please use either
the JIT or basic versions of the activations.

Hacked together by / Copyright 2020 Ross Wightman
"""

import torch
from torch import nn as nn
from torch.nn import functional as F


@torch.jit.script
def swish_jit_fwd(x):
    return x.mul(torch.sigmoid(x))


@torch.jit.script
def swish_jit_bwd(x, grad_output):
    x_sigmoid = torch.sigmoid(x)
    return grad_output * (x_sigmoid * (1 + x * (1 - x_sigmoid)))


class SwishJitAutoFn(torch.autograd.Function):
    """ torch.jit.script optimised Swish w/ memory-efficient checkpoint
    Inspired by conversation btw Jeremy Howard & Adam Pazske
    https://twitter.com/jeremyphoward/status/1188251041835315200
    """
    @staticmethod
    def symbolic(g, x):
        return g.op("Mul", x, g.op("Sigmoid", x))

    @staticmethod
    def forward(ctx, x):
        ctx.save_for_backward(x)
        return swish_jit_fwd(x)

    @staticmethod
    def backward(ctx, grad_output):
        x = ctx.saved_tensors[0]
        return swish_jit_bwd(x, grad_output)


def swish_me(x, inplace=False):
    return SwishJitAutoFn.apply(x)


class SwishMe(nn.Module):
    def __init__(self, inplace: bool = False):
        super(SwishMe, self).__init__()

    def forward(self, x):
        return SwishJitAutoFn.apply(x)


@torch.jit.script
def mish_jit_fwd(x):
    return x.mul(torch.tanh(F.softplus(x)))


@torch.jit.script
def mish_jit_bwd(x, grad_output):
    x_sigmoid = torch.sigmoid(x)
    x_tanh_sp = F.softplus(x).tanh()
    return grad_output.mul(x_tanh_sp + x * x_sigmoid * (1 - x_tanh_sp * x_tanh_sp))


class MishJitAutoFn(torch.autograd.Function):
    """ Mish: A Self Regularized Non-Monotonic Neural Activation Function - https://arxiv.org/abs/1908.08681
    A memory efficient, jit scripted variant of Mish
    """
    @staticmethod
    def forward(ctx, x):
        ctx.save_for_backward(x)
        return mish_jit_fwd(x)

    @staticmethod
    def backward(ctx, grad_output):
        x = ctx.saved_tensors[0]
        return mish_jit_bwd(x, grad_output)


def mish_me(x, inplace=False):
    return MishJitAutoFn.apply(x)


class MishMe(nn.Module):
    def __init__(self, inplace: bool = False):
        super(MishMe, self).__init__()

    def forward(self, x):
        return MishJitAutoFn.apply(x)


@torch.jit.script
def hard_sigmoid_jit_fwd(x, inplace: bool = False):
    return (x + 3).clamp(min=0, max=6).div(6.)


@torch.jit.script
def hard_sigmoid_jit_bwd(x, grad_output):
    m = torch.ones_like(x) * ((x >= -3.) & (x <= 3.)) / 6.
    return grad_output * m


class HardSigmoidJitAutoFn(torch.autograd.Function):
    @staticmethod
    def forward(ctx, x):
        ctx.save_for_backward(x)
        return hard_sigmoid_jit_fwd(x)

    @staticmethod
    def backward(ctx, grad_output):
        x = ctx.saved_tensors[0]
        return hard_sigmoid_jit_bwd(x, grad_output)


def hard_sigmoid_me(x, inplace: bool = False):
    return HardSigmoidJitAutoFn.apply(x)


class HardSigmoidMe(nn.Module):
    def __init__(self, inplace: bool = False):
        super(HardSigmoidMe, self).__init__()

    def forward(self, x):
        return HardSigmoidJitAutoFn.apply(x)


@torch.jit.script
def hard_swish_jit_fwd(x):
    return x * (x + 3).clamp(min=0, max=6).div(6.)


@torch.jit.script
def hard_swish_jit_bwd(x, grad_output):
    m = torch.ones_like(x) * (x >= 3.)
    m = torch.where((x >= -3.) & (x <= 3.),  x / 3. + .5, m)
    return grad_output * m


class HardSwishJitAutoFn(torch.autograd.Function):
    """A memory efficient, jit-scripted HardSwish activation"""
    @staticmethod
    def forward(ctx, x):
        ctx.save_for_backward(x)
        return hard_swish_jit_fwd(x)

    @staticmethod
    def backward(ctx, grad_output):
        x = ctx.saved_tensors[0]
        return hard_swish_jit_bwd(x, grad_output)

    @staticmethod
    def symbolic(g, self):
        input = g.op("Add", self, g.op('Constant', value_t=torch.tensor(3, dtype=torch.float)))
        hardtanh_ = g.op("Clip", input, g.op('Constant', value_t=torch.tensor(0, dtype=torch.float)), g.op('Constant', value_t=torch.tensor(6, dtype=torch.float)))
        hardtanh_ = g.op("Div", hardtanh_, g.op('Constant', value_t=torch.tensor(6, dtype=torch.float)))
        return g.op("Mul", self, hardtanh_)


def hard_swish_me(x, inplace=False):
    return HardSwishJitAutoFn.apply(x)


class HardSwishMe(nn.Module):
    def __init__(self, inplace: bool = False):
        super(HardSwishMe, self).__init__()

    def forward(self, x):
        return HardSwishJitAutoFn.apply(x)


@torch.jit.script
def hard_mish_jit_fwd(x):
    return 0.5 * x * (x + 2).clamp(min=0, max=2)


@torch.jit.script
def hard_mish_jit_bwd(x, grad_output):
    m = torch.ones_like(x) * (x >= -2.)
    m = torch.where((x >= -2.) & (x <= 0.), x + 1., m)
    return grad_output * m


class HardMishJitAutoFn(torch.autograd.Function):
    """ A memory efficient, jit scripted variant of Hard Mish
    Experimental, based on notes by Mish author Diganta Misra at
      https://github.com/digantamisra98/H-Mish/blob/0da20d4bc58e696b6803f2523c58d3c8a82782d0/README.md
    """
    @staticmethod
    def forward(ctx, x):
        ctx.save_for_backward(x)
        return hard_mish_jit_fwd(x)

    @staticmethod
    def backward(ctx, grad_output):
        x = ctx.saved_tensors[0]
        return hard_mish_jit_bwd(x, grad_output)


def hard_mish_me(x, inplace: bool = False):
    return HardMishJitAutoFn.apply(x)


class HardMishMe(nn.Module):
    def __init__(self, inplace: bool = False):
        super(HardMishMe, self).__init__()

    def forward(self, x):
        return HardMishJitAutoFn.apply(x)