File size: 18,852 Bytes
786f6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
import math
import numbers
import random
import warnings
from typing import List, Sequence, Tuple, Union

import torch
import torchvision.transforms.functional as F
try:
    from torchvision.transforms.functional import InterpolationMode
    has_interpolation_mode = True
except ImportError:
    has_interpolation_mode = False
from PIL import Image
import numpy as np

__all__ = [
    "ToNumpy", "ToTensor", "str_to_interp_mode", "str_to_pil_interp", "interp_mode_to_str",
    "RandomResizedCropAndInterpolation", "CenterCropOrPad", "center_crop_or_pad", "crop_or_pad",
    "RandomCropOrPad", "RandomPad", "ResizeKeepRatio", "TrimBorder"
]


class ToNumpy:

    def __call__(self, pil_img):
        np_img = np.array(pil_img, dtype=np.uint8)
        if np_img.ndim < 3:
            np_img = np.expand_dims(np_img, axis=-1)
        np_img = np.rollaxis(np_img, 2)  # HWC to CHW
        return np_img


class ToTensor:
    """ ToTensor with no rescaling of values"""
    def __init__(self, dtype=torch.float32):
        self.dtype = dtype

    def __call__(self, pil_img):
        return F.pil_to_tensor(pil_img).to(dtype=self.dtype)


# Pillow is deprecating the top-level resampling attributes (e.g., Image.BILINEAR) in
# favor of the Image.Resampling enum. The top-level resampling attributes will be
# removed in Pillow 10.
if hasattr(Image, "Resampling"):
    _pil_interpolation_to_str = {
        Image.Resampling.NEAREST: 'nearest',
        Image.Resampling.BILINEAR: 'bilinear',
        Image.Resampling.BICUBIC: 'bicubic',
        Image.Resampling.BOX: 'box',
        Image.Resampling.HAMMING: 'hamming',
        Image.Resampling.LANCZOS: 'lanczos',
    }
else:
    _pil_interpolation_to_str = {
        Image.NEAREST: 'nearest',
        Image.BILINEAR: 'bilinear',
        Image.BICUBIC: 'bicubic',
        Image.BOX: 'box',
        Image.HAMMING: 'hamming',
        Image.LANCZOS: 'lanczos',
    }

_str_to_pil_interpolation = {b: a for a, b in _pil_interpolation_to_str.items()}


if has_interpolation_mode:
    _torch_interpolation_to_str = {
        InterpolationMode.NEAREST: 'nearest',
        InterpolationMode.BILINEAR: 'bilinear',
        InterpolationMode.BICUBIC: 'bicubic',
        InterpolationMode.BOX: 'box',
        InterpolationMode.HAMMING: 'hamming',
        InterpolationMode.LANCZOS: 'lanczos',
    }
    _str_to_torch_interpolation = {b: a for a, b in _torch_interpolation_to_str.items()}
else:
    _pil_interpolation_to_torch = {}
    _torch_interpolation_to_str = {}


def str_to_pil_interp(mode_str):
    return _str_to_pil_interpolation[mode_str]


def str_to_interp_mode(mode_str):
    if has_interpolation_mode:
        return _str_to_torch_interpolation[mode_str]
    else:
        return _str_to_pil_interpolation[mode_str]


def interp_mode_to_str(mode):
    if has_interpolation_mode:
        return _torch_interpolation_to_str[mode]
    else:
        return _pil_interpolation_to_str[mode]


_RANDOM_INTERPOLATION = (str_to_interp_mode('bilinear'), str_to_interp_mode('bicubic'))


def _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size."):
    if isinstance(size, numbers.Number):
        return int(size), int(size)

    if isinstance(size, Sequence) and len(size) == 1:
        return size[0], size[0]

    if len(size) != 2:
        raise ValueError(error_msg)

    return size


class RandomResizedCropAndInterpolation:
    """Crop the given PIL Image to random size and aspect ratio with random interpolation.

    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop
    is finally resized to given size.
    This is popularly used to train the Inception networks.

    Args:
        size: expected output size of each edge
        scale: range of size of the origin size cropped
        ratio: range of aspect ratio of the origin aspect ratio cropped
        interpolation: Default: PIL.Image.BILINEAR
    """

    def __init__(
            self,
            size,
            scale=(0.08, 1.0),
            ratio=(3. / 4., 4. / 3.),
            interpolation='bilinear',
    ):
        if isinstance(size, (list, tuple)):
            self.size = tuple(size)
        else:
            self.size = (size, size)
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
            warnings.warn("range should be of kind (min, max)")

        if interpolation == 'random':
            self.interpolation = _RANDOM_INTERPOLATION
        else:
            self.interpolation = str_to_interp_mode(interpolation)
        self.scale = scale
        self.ratio = ratio

    @staticmethod
    def get_params(img, scale, ratio):
        """Get parameters for ``crop`` for a random sized crop.

        Args:
            img (PIL Image): Image to be cropped.
            scale (tuple): range of size of the origin size cropped
            ratio (tuple): range of aspect ratio of the origin aspect ratio cropped

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for a random
                sized crop.
        """
        img_w, img_h = F.get_image_size(img)
        area = img_w * img_h

        for attempt in range(10):
            target_area = random.uniform(*scale) * area
            log_ratio = (math.log(ratio[0]), math.log(ratio[1]))
            aspect_ratio = math.exp(random.uniform(*log_ratio))

            target_w = int(round(math.sqrt(target_area * aspect_ratio)))
            target_h = int(round(math.sqrt(target_area / aspect_ratio)))
            if target_w <= img_w and target_h <= img_h:
                i = random.randint(0, img_h - target_h)
                j = random.randint(0, img_w - target_w)
                return i, j, target_h, target_w

        # Fallback to central crop
        in_ratio = img_w / img_h
        if in_ratio < min(ratio):
            target_w = img_w
            target_h = int(round(target_w / min(ratio)))
        elif in_ratio > max(ratio):
            target_h = img_h
            target_w = int(round(target_h * max(ratio)))
        else:  # whole image
            target_w = img_w
            target_h = img_h
        i = (img_h - target_h) // 2
        j = (img_w - target_w) // 2
        return i, j, target_h, target_w

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be cropped and resized.

        Returns:
            PIL Image: Randomly cropped and resized image.
        """
        i, j, h, w = self.get_params(img, self.scale, self.ratio)
        if isinstance(self.interpolation, (tuple, list)):
            interpolation = random.choice(self.interpolation)
        else:
            interpolation = self.interpolation
        return F.resized_crop(img, i, j, h, w, self.size, interpolation)

    def __repr__(self):
        if isinstance(self.interpolation, (tuple, list)):
            interpolate_str = ' '.join([interp_mode_to_str(x) for x in self.interpolation])
        else:
            interpolate_str = interp_mode_to_str(self.interpolation)
        format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
        format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale))
        format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio))
        format_string += ', interpolation={0})'.format(interpolate_str)
        return format_string


def center_crop_or_pad(
        img: torch.Tensor,
        output_size: Union[int, List[int]],
        fill: Union[int, Tuple[int, int, int]] = 0,
        padding_mode: str = 'constant',
) -> torch.Tensor:
    """Center crops and/or pads the given image.

    If the image is torch Tensor, it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
    If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.

    Args:
        img (PIL Image or Tensor): Image to be cropped.
        output_size (sequence or int): (height, width) of the crop box. If int or sequence with single int,
            it is used for both directions.
        fill (int, Tuple[int]): Padding color

    Returns:
        PIL Image or Tensor: Cropped image.
    """
    output_size = _setup_size(output_size)
    crop_height, crop_width = output_size
    _, image_height, image_width = F.get_dimensions(img)

    if crop_width > image_width or crop_height > image_height:
        padding_ltrb = [
            (crop_width - image_width) // 2 if crop_width > image_width else 0,
            (crop_height - image_height) // 2 if crop_height > image_height else 0,
            (crop_width - image_width + 1) // 2 if crop_width > image_width else 0,
            (crop_height - image_height + 1) // 2 if crop_height > image_height else 0,
        ]
        img = F.pad(img, padding_ltrb, fill=fill, padding_mode=padding_mode)
        _, image_height, image_width = F.get_dimensions(img)
        if crop_width == image_width and crop_height == image_height:
            return img

    crop_top = int(round((image_height - crop_height) / 2.0))
    crop_left = int(round((image_width - crop_width) / 2.0))
    return F.crop(img, crop_top, crop_left, crop_height, crop_width)


class CenterCropOrPad(torch.nn.Module):
    """Crops the given image at the center.
    If the image is torch Tensor, it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
    If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
    """

    def __init__(
            self,
            size: Union[int, List[int]],
            fill: Union[int, Tuple[int, int, int]] = 0,
            padding_mode: str = 'constant',
    ):
        super().__init__()
        self.size = _setup_size(size)
        self.fill = fill
        self.padding_mode = padding_mode

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            PIL Image or Tensor: Cropped image.
        """
        return center_crop_or_pad(img, self.size, fill=self.fill, padding_mode=self.padding_mode)

    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(size={self.size})"


def crop_or_pad(
        img: torch.Tensor,
        top: int,
        left: int,
        height: int,
        width: int,
        fill: Union[int, Tuple[int, int, int]] = 0,
        padding_mode: str = 'constant',
) -> torch.Tensor:
    """ Crops and/or pads image to meet target size, with control over fill and padding_mode.
    """
    _, image_height, image_width = F.get_dimensions(img)
    right = left + width
    bottom = top + height
    if left < 0 or top < 0 or right > image_width or bottom > image_height:
        padding_ltrb = [
            max(-left + min(0, right), 0),
            max(-top + min(0, bottom), 0),
            max(right - max(image_width, left), 0),
            max(bottom - max(image_height, top), 0),
        ]
        img = F.pad(img, padding_ltrb, fill=fill, padding_mode=padding_mode)

    top = max(top, 0)
    left = max(left, 0)
    return F.crop(img, top, left, height, width)


class RandomCropOrPad(torch.nn.Module):
    """ Crop and/or pad image with random placement within the crop or pad margin.
    """

    def __init__(
            self,
            size: Union[int, List[int]],
            fill: Union[int, Tuple[int, int, int]] = 0,
            padding_mode: str = 'constant',
    ):
        super().__init__()
        self.size = _setup_size(size)
        self.fill = fill
        self.padding_mode = padding_mode

    @staticmethod
    def get_params(img, size):
        _, image_height, image_width = F.get_dimensions(img)
        delta_height = image_height - size[0]
        delta_width = image_width - size[1]
        top = int(math.copysign(random.randint(0, abs(delta_height)), delta_height))
        left = int(math.copysign(random.randint(0, abs(delta_width)), delta_width))
        return top, left

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            PIL Image or Tensor: Cropped image.
        """
        top, left = self.get_params(img, self.size)
        return crop_or_pad(
            img,
            top=top,
            left=left,
            height=self.size[0],
            width=self.size[1],
            fill=self.fill,
            padding_mode=self.padding_mode,
        )

    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(size={self.size})"


class RandomPad:
    def __init__(self, input_size, fill=0):
        self.input_size = input_size
        self.fill = fill

    @staticmethod
    def get_params(img, input_size):
        width, height = F.get_image_size(img)
        delta_width = max(input_size[1] - width, 0)
        delta_height = max(input_size[0] - height, 0)
        pad_left = random.randint(0, delta_width)
        pad_top = random.randint(0, delta_height)
        pad_right = delta_width - pad_left
        pad_bottom = delta_height - pad_top
        return pad_left, pad_top, pad_right, pad_bottom

    def __call__(self, img):
        padding = self.get_params(img, self.input_size)
        img = F.pad(img, padding, self.fill)
        return img


class ResizeKeepRatio:
    """ Resize and Keep Aspect Ratio
    """

    def __init__(
            self,
            size,
            longest=0.,
            interpolation='bilinear',
            random_scale_prob=0.,
            random_scale_range=(0.85, 1.05),
            random_scale_area=False,
            random_aspect_prob=0.,
            random_aspect_range=(0.9, 1.11),
    ):
        """

        Args:
            size:
            longest:
            interpolation:
            random_scale_prob:
            random_scale_range:
            random_scale_area:
            random_aspect_prob:
            random_aspect_range:
        """
        if isinstance(size, (list, tuple)):
            self.size = tuple(size)
        else:
            self.size = (size, size)
        if interpolation == 'random':
            self.interpolation = _RANDOM_INTERPOLATION
        else:
            self.interpolation = str_to_interp_mode(interpolation)
        self.longest = float(longest)
        self.random_scale_prob = random_scale_prob
        self.random_scale_range = random_scale_range
        self.random_scale_area = random_scale_area
        self.random_aspect_prob = random_aspect_prob
        self.random_aspect_range = random_aspect_range

    @staticmethod
    def get_params(
            img,
            target_size,
            longest,
            random_scale_prob=0.,
            random_scale_range=(1.0, 1.33),
            random_scale_area=False,
            random_aspect_prob=0.,
            random_aspect_range=(0.9, 1.11)
    ):
        """Get parameters
        """
        img_h, img_w = img_size = F.get_dimensions(img)[1:]
        target_h, target_w = target_size
        ratio_h = img_h / target_h
        ratio_w = img_w / target_w
        ratio = max(ratio_h, ratio_w) * longest + min(ratio_h, ratio_w) * (1. - longest)

        if random_scale_prob > 0 and random.random() < random_scale_prob:
            ratio_factor = random.uniform(random_scale_range[0], random_scale_range[1])
            if random_scale_area:
                # make ratio factor equivalent to RRC area crop where < 1.0 = area zoom,
                # otherwise like affine scale where < 1.0 = linear zoom out
                ratio_factor = 1. / math.sqrt(ratio_factor)
            ratio_factor = (ratio_factor, ratio_factor)
        else:
            ratio_factor = (1., 1.)

        if random_aspect_prob > 0 and random.random() < random_aspect_prob:
            log_aspect = (math.log(random_aspect_range[0]), math.log(random_aspect_range[1]))
            aspect_factor = math.exp(random.uniform(*log_aspect))
            aspect_factor = math.sqrt(aspect_factor)
            # currently applying random aspect adjustment equally to both dims,
            # could change to keep output sizes above their target where possible
            ratio_factor = (ratio_factor[0] / aspect_factor, ratio_factor[1] * aspect_factor)

        size = [round(x * f / ratio) for x, f in zip(img_size, ratio_factor)]
        return size

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be cropped and resized.

        Returns:
            PIL Image: Resized, padded to at least target size, possibly cropped to exactly target size
        """
        size = self.get_params(
            img, self.size, self.longest,
            self.random_scale_prob, self.random_scale_range, self.random_scale_area,
            self.random_aspect_prob, self.random_aspect_range
        )
        if isinstance(self.interpolation, (tuple, list)):
            interpolation = random.choice(self.interpolation)
        else:
            interpolation = self.interpolation
        img = F.resize(img, size, interpolation)
        return img

    def __repr__(self):
        if isinstance(self.interpolation, (tuple, list)):
            interpolate_str = ' '.join([interp_mode_to_str(x) for x in self.interpolation])
        else:
            interpolate_str = interp_mode_to_str(self.interpolation)
        format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
        format_string += f', interpolation={interpolate_str}'
        format_string += f', longest={self.longest:.3f}'
        format_string += f', random_scale_prob={self.random_scale_prob:.3f}'
        format_string += f', random_scale_range=(' \
                         f'{self.random_scale_range[0]:.3f}, {self.random_aspect_range[1]:.3f})'
        format_string += f', random_aspect_prob={self.random_aspect_prob:.3f}'
        format_string += f', random_aspect_range=(' \
                         f'{self.random_aspect_range[0]:.3f}, {self.random_aspect_range[1]:.3f}))'
        return format_string


class TrimBorder(torch.nn.Module):

    def __init__(
            self,
            border_size: int,
    ):
        super().__init__()
        self.border_size = border_size

    def forward(self, img):
        w, h = F.get_image_size(img)
        top = left = self.border_size
        top = min(top, h)
        left = min(left, h)
        height = max(0, h - 2 * self.border_size)
        width = max(0, w - 2 * self.border_size)
        return F.crop(img, top, left, height, width)