File size: 6,210 Bytes
786f6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
""" Quick n Simple Image Folder, Tarfile based DataSet

Hacked together by / Copyright 2019, Ross Wightman
"""
import io
import logging
from typing import Optional

import torch
import torch.utils.data as data
from PIL import Image

from .readers import create_reader

_logger = logging.getLogger(__name__)


_ERROR_RETRY = 50


class ImageDataset(data.Dataset):

    def __init__(
            self,
            root,
            reader=None,
            split='train',
            class_map=None,
            load_bytes=False,
            input_img_mode='RGB',
            transform=None,
            target_transform=None,
    ):
        if reader is None or isinstance(reader, str):
            reader = create_reader(
                reader or '',
                root=root,
                split=split,
                class_map=class_map
            )
        self.reader = reader
        self.load_bytes = load_bytes
        self.input_img_mode = input_img_mode
        self.transform = transform
        self.target_transform = target_transform
        self._consecutive_errors = 0

    def __getitem__(self, index):
        img, target = self.reader[index]

        try:
            img = img.read() if self.load_bytes else Image.open(img)
        except Exception as e:
            _logger.warning(f'Skipped sample (index {index}, file {self.reader.filename(index)}). {str(e)}')
            self._consecutive_errors += 1
            if self._consecutive_errors < _ERROR_RETRY:
                return self.__getitem__((index + 1) % len(self.reader))
            else:
                raise e
        self._consecutive_errors = 0

        if self.input_img_mode and not self.load_bytes:
            img = img.convert(self.input_img_mode)
        if self.transform is not None:
            img = self.transform(img)

        if target is None:
            target = -1
        elif self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

    def __len__(self):
        return len(self.reader)

    def filename(self, index, basename=False, absolute=False):
        return self.reader.filename(index, basename, absolute)

    def filenames(self, basename=False, absolute=False):
        return self.reader.filenames(basename, absolute)


class IterableImageDataset(data.IterableDataset):

    def __init__(
            self,
            root,
            reader=None,
            split='train',
            class_map=None,
            is_training=False,
            batch_size=1,
            num_samples=None,
            seed=42,
            repeats=0,
            download=False,
            input_img_mode='RGB',
            input_key=None,
            target_key=None,
            transform=None,
            target_transform=None,
            max_steps=None,
    ):
        assert reader is not None
        if isinstance(reader, str):
            self.reader = create_reader(
                reader,
                root=root,
                split=split,
                class_map=class_map,
                is_training=is_training,
                batch_size=batch_size,
                num_samples=num_samples,
                seed=seed,
                repeats=repeats,
                download=download,
                input_img_mode=input_img_mode,
                input_key=input_key,
                target_key=target_key,
                max_steps=max_steps,
            )
        else:
            self.reader = reader
        self.transform = transform
        self.target_transform = target_transform
        self._consecutive_errors = 0

    def __iter__(self):
        for img, target in self.reader:
            if self.transform is not None:
                img = self.transform(img)
            if self.target_transform is not None:
                target = self.target_transform(target)
            yield img, target

    def __len__(self):
        if hasattr(self.reader, '__len__'):
            return len(self.reader)
        else:
            return 0

    def set_epoch(self, count):
        # TFDS and WDS need external epoch count for deterministic cross process shuffle
        if hasattr(self.reader, 'set_epoch'):
            self.reader.set_epoch(count)

    def set_loader_cfg(
            self,
            num_workers: Optional[int] = None,
    ):
        # TFDS and WDS readers need # workers for correct # samples estimate before loader processes created
        if hasattr(self.reader, 'set_loader_cfg'):
            self.reader.set_loader_cfg(num_workers=num_workers)

    def filename(self, index, basename=False, absolute=False):
        assert False, 'Filename lookup by index not supported, use filenames().'

    def filenames(self, basename=False, absolute=False):
        return self.reader.filenames(basename, absolute)


class AugMixDataset(torch.utils.data.Dataset):
    """Dataset wrapper to perform AugMix or other clean/augmentation mixes"""

    def __init__(self, dataset, num_splits=2):
        self.augmentation = None
        self.normalize = None
        self.dataset = dataset
        if self.dataset.transform is not None:
            self._set_transforms(self.dataset.transform)
        self.num_splits = num_splits

    def _set_transforms(self, x):
        assert isinstance(x, (list, tuple)) and len(x) == 3, 'Expecting a tuple/list of 3 transforms'
        self.dataset.transform = x[0]
        self.augmentation = x[1]
        self.normalize = x[2]

    @property
    def transform(self):
        return self.dataset.transform

    @transform.setter
    def transform(self, x):
        self._set_transforms(x)

    def _normalize(self, x):
        return x if self.normalize is None else self.normalize(x)

    def __getitem__(self, i):
        x, y = self.dataset[i]  # all splits share the same dataset base transform
        x_list = [self._normalize(x)]  # first split only normalizes (this is the 'clean' split)
        # run the full augmentation on the remaining splits
        for _ in range(self.num_splits - 1):
            x_list.append(self._normalize(self.augmentation(x)))
        return tuple(x_list), y

    def __len__(self):
        return len(self.dataset)