File size: 9,494 Bytes
786f6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
# Dual Path Network (DPN)

A **Dual Path Network (DPN)** is a convolutional neural network which presents a new topology of connection paths internally. The intuition is that [ResNets](https://paperswithcode.com/method/resnet) enables feature re-usage while DenseNet enables new feature exploration, and both are important for learning good representations. To enjoy the benefits from both path topologies, Dual Path Networks share common features while maintaining the flexibility to explore new features through dual path architectures. 

The principal building block is an [DPN Block](https://paperswithcode.com/method/dpn-block).

## How do I use this model on an image?
To load a pretrained model:

```python
import timm
model = timm.create_model('dpn107', pretrained=True)
model.eval()
```

To load and preprocess the image:
```python 
import urllib
from PIL import Image
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform

config = resolve_data_config({}, model=model)
transform = create_transform(**config)

url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
urllib.request.urlretrieve(url, filename)
img = Image.open(filename).convert('RGB')
tensor = transform(img).unsqueeze(0) # transform and add batch dimension
```

To get the model predictions:
```python
import torch
with torch.no_grad():
    out = model(tensor)
probabilities = torch.nn.functional.softmax(out[0], dim=0)
print(probabilities.shape)
# prints: torch.Size([1000])
```

To get the top-5 predictions class names:
```python
# Get imagenet class mappings
url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
urllib.request.urlretrieve(url, filename) 
with open("imagenet_classes.txt", "r") as f:
    categories = [s.strip() for s in f.readlines()]

# Print top categories per image
top5_prob, top5_catid = torch.topk(probabilities, 5)
for i in range(top5_prob.size(0)):
    print(categories[top5_catid[i]], top5_prob[i].item())
# prints class names and probabilities like:
# [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
```

Replace the model name with the variant you want to use, e.g. `dpn107`. You can find the IDs in the model summaries at the top of this page.

To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use.

## How do I finetune this model?
You can finetune any of the pre-trained models just by changing the classifier (the last layer).
```python
model = timm.create_model('dpn107', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
```
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.

## How do I train this model?

You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh.

## Citation

```BibTeX
@misc{chen2017dual,
      title={Dual Path Networks}, 
      author={Yunpeng Chen and Jianan Li and Huaxin Xiao and Xiaojie Jin and Shuicheng Yan and Jiashi Feng},
      year={2017},
      eprint={1707.01629},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```

<!--
Type: model-index
Collections:
- Name: DPN
  Paper:
    Title: Dual Path Networks
    URL: https://paperswithcode.com/paper/dual-path-networks
Models:
- Name: dpn107
  In Collection: DPN
  Metadata:
    FLOPs: 23524280296
    Parameters: 86920000
    File Size: 348612331
    Architecture:
    - Batch Normalization
    - Convolution
    - DPN Block
    - Dense Connections
    - Global Average Pooling
    - Max Pooling
    - Softmax
    Tasks:
    - Image Classification
    Training Techniques:
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 40x K80 GPUs
    ID: dpn107
    LR: 0.316
    Layers: 107
    Crop Pct: '0.875'
    Batch Size: 1280
    Image Size: '224'
    Interpolation: bicubic
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dpn.py#L310
  Weights: https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn107_extra-1ac7121e2.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 80.16%
      Top 5 Accuracy: 94.91%
- Name: dpn131
  In Collection: DPN
  Metadata:
    FLOPs: 20586274792
    Parameters: 79250000
    File Size: 318016207
    Architecture:
    - Batch Normalization
    - Convolution
    - DPN Block
    - Dense Connections
    - Global Average Pooling
    - Max Pooling
    - Softmax
    Tasks:
    - Image Classification
    Training Techniques:
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 40x K80 GPUs
    ID: dpn131
    LR: 0.316
    Layers: 131
    Crop Pct: '0.875'
    Batch Size: 960
    Image Size: '224'
    Interpolation: bicubic
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dpn.py#L302
  Weights: https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn131-71dfe43e0.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 79.83%
      Top 5 Accuracy: 94.71%
- Name: dpn68
  In Collection: DPN
  Metadata:
    FLOPs: 2990567880
    Parameters: 12610000
    File Size: 50761994
    Architecture:
    - Batch Normalization
    - Convolution
    - DPN Block
    - Dense Connections
    - Global Average Pooling
    - Max Pooling
    - Softmax
    Tasks:
    - Image Classification
    Training Techniques:
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 40x K80 GPUs
    ID: dpn68
    LR: 0.316
    Layers: 68
    Crop Pct: '0.875'
    Batch Size: 1280
    Image Size: '224'
    Interpolation: bicubic
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dpn.py#L270
  Weights: https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn68-66bebafa7.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 76.31%
      Top 5 Accuracy: 92.97%
- Name: dpn68b
  In Collection: DPN
  Metadata:
    FLOPs: 2990567880
    Parameters: 12610000
    File Size: 50781025
    Architecture:
    - Batch Normalization
    - Convolution
    - DPN Block
    - Dense Connections
    - Global Average Pooling
    - Max Pooling
    - Softmax
    Tasks:
    - Image Classification
    Training Techniques:
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 40x K80 GPUs
    ID: dpn68b
    LR: 0.316
    Layers: 68
    Crop Pct: '0.875'
    Batch Size: 1280
    Image Size: '224'
    Interpolation: bicubic
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dpn.py#L278
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dpn68b_ra-a31ca160.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 79.21%
      Top 5 Accuracy: 94.42%
- Name: dpn92
  In Collection: DPN
  Metadata:
    FLOPs: 8357659624
    Parameters: 37670000
    File Size: 151248422
    Architecture:
    - Batch Normalization
    - Convolution
    - DPN Block
    - Dense Connections
    - Global Average Pooling
    - Max Pooling
    - Softmax
    Tasks:
    - Image Classification
    Training Techniques:
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 40x K80 GPUs
    ID: dpn92
    LR: 0.316
    Layers: 92
    Crop Pct: '0.875'
    Batch Size: 1280
    Image Size: '224'
    Interpolation: bicubic
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dpn.py#L286
  Weights: https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn92_extra-b040e4a9b.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 79.99%
      Top 5 Accuracy: 94.84%
- Name: dpn98
  In Collection: DPN
  Metadata:
    FLOPs: 15003675112
    Parameters: 61570000
    File Size: 247021307
    Architecture:
    - Batch Normalization
    - Convolution
    - DPN Block
    - Dense Connections
    - Global Average Pooling
    - Max Pooling
    - Softmax
    Tasks:
    - Image Classification
    Training Techniques:
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 40x K80 GPUs
    ID: dpn98
    LR: 0.4
    Layers: 98
    Crop Pct: '0.875'
    Batch Size: 1280
    Image Size: '224'
    Interpolation: bicubic
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dpn.py#L294
  Weights: https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn98-5b90dec4d.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 79.65%
      Top 5 Accuracy: 94.61%
-->