File size: 44,360 Bytes
786f6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
""" EVA

EVA from https://github.com/baaivision/EVA , paper: https://arxiv.org/abs/2211.07636

@article{EVA,
  title={EVA: Exploring the Limits of Masked Visual Representation Learning at Scale},
  author={Fang, Yuxin and Wang, Wen and Xie, Binhui and Sun, Quan and Wu, Ledell and Wang, Xinggang and Huang,
  Tiejun and Wang, Xinlong and Cao, Yue},
  journal={arXiv preprint arXiv:2211.07636},
  year={2022}
}

EVA-02: A Visual Representation for Neon Genesis - https://arxiv.org/abs/2303.11331
@article{EVA02,
  title={EVA-02: A Visual Representation for Neon Genesis},
  author={Fang, Yuxin and Sun, Quan and Wang, Xinggang and Huang, Tiejun and Wang, Xinlong and Cao, Yue},
  journal={arXiv preprint arXiv:2303.11331},
  year={2023}
}

This file contains EVA & EVA02 model implementations evolved from BEiT, additional models in vision_transformer.py.

Modifications by / Copyright 2023 Ross Wightman, original copyrights below
"""
# EVA models Copyright (c) 2022 BAAI-Vision
# EVA02 models Copyright (c) 2023 BAAI-Vision
import math
from typing import Callable, List, Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.checkpoint import checkpoint

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
from timm.layers import PatchEmbed, Mlp, GluMlp, SwiGLU, LayerNorm, DropPath, PatchDropout, RotaryEmbeddingCat, \
    apply_rot_embed_cat, apply_keep_indices_nlc, trunc_normal_, resample_patch_embed, resample_abs_pos_embed, \
    to_2tuple, use_fused_attn

from ._builder import build_model_with_cfg
from ._features import feature_take_indices
from ._registry import generate_default_cfgs, register_model

__all__ = ['Eva']


class EvaAttention(nn.Module):
    fused_attn: torch.jit.Final[bool]

    def __init__(
            self,
            dim: int,
            num_heads: int = 8,
            qkv_bias: bool = True,
            qkv_fused: bool = True,
            attn_drop: float = 0.,
            proj_drop: float = 0.,
            attn_head_dim: Optional[int] = None,
            norm_layer: Optional[Callable] = None,
    ):
        """

        Args:
            dim:
            num_heads:
            qkv_bias:
            qkv_fused:
            attn_drop:
            proj_drop:
            attn_head_dim:
            norm_layer:
        """
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        if attn_head_dim is not None:
            head_dim = attn_head_dim
        all_head_dim = head_dim * self.num_heads
        self.scale = head_dim ** -0.5
        self.fused_attn = use_fused_attn()

        if qkv_fused:
            self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
            self.q_proj = self.k_proj = self.v_proj = None
            if qkv_bias:
                self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
                self.register_buffer('k_bias', torch.zeros(all_head_dim), persistent=False)
                self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
            else:
                self.q_bias = self.k_bias = self.v_bias = None
        else:
            self.q_proj = nn.Linear(dim, all_head_dim, bias=qkv_bias)
            self.k_proj = nn.Linear(dim, all_head_dim, bias=False)
            self.v_proj = nn.Linear(dim, all_head_dim, bias=qkv_bias)
            self.qkv = None
            self.q_bias = self.k_bias = self.v_bias = None

        self.attn_drop = nn.Dropout(attn_drop)
        self.norm = norm_layer(all_head_dim) if norm_layer is not None else nn.Identity()
        self.proj = nn.Linear(all_head_dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(
            self,
            x,
            rope: Optional[torch.Tensor] = None,
            attn_mask: Optional[torch.Tensor] = None,
    ):
        B, N, C = x.shape

        if self.qkv is not None:
            qkv_bias = torch.cat((self.q_bias, self.k_bias, self.v_bias)) if self.q_bias is not None else None
            qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
            qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
            q, k, v = qkv.unbind(0)  # B, num_heads, N, head_dim
        else:
            q = self.q_proj(x).reshape(B, N, self.num_heads, -1).transpose(1, 2)  # B, num_heads, N, C
            k = self.k_proj(x).reshape(B, N, self.num_heads, -1).transpose(1, 2)
            v = self.v_proj(x).reshape(B, N, self.num_heads, -1).transpose(1, 2)

        if rope is not None:
            q = torch.cat([q[:, :, :1, :], apply_rot_embed_cat(q[:, :, 1:, :], rope)], 2).type_as(v)
            k = torch.cat([k[:, :, :1, :], apply_rot_embed_cat(k[:, :, 1:, :], rope)], 2).type_as(v)

        if self.fused_attn:
            x = F.scaled_dot_product_attention(
                q, k, v,
                attn_mask=attn_mask,
                dropout_p=self.attn_drop.p if self.training else 0.,
            )
        else:
            q = q * self.scale
            attn = (q @ k.transpose(-2, -1))
            attn = attn.softmax(dim=-1)
            if attn_mask is not None:
                attn_mask = attn_mask.to(torch.bool)
                attn = attn.masked_fill(~attn_mask[:, None, None, :], float("-inf"))
            attn = self.attn_drop(attn)
            x = attn @ v

        x = x.transpose(1, 2).reshape(B, N, C)
        x = self.norm(x)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class EvaBlock(nn.Module):

    def __init__(
            self,
            dim: int,
            num_heads: int,
            qkv_bias: bool = True,
            qkv_fused: bool = True,
            mlp_ratio: float = 4.,
            swiglu_mlp: bool = False,
            scale_mlp: bool = False,
            scale_attn_inner: bool = False,
            proj_drop: float = 0.,
            attn_drop: float = 0.,
            drop_path: float = 0.,
            init_values: Optional[float] = None,
            act_layer: Callable = nn.GELU,
            norm_layer: Callable = LayerNorm,
            attn_head_dim: Optional[int] = None,
    ):
        """

        Args:
            dim:
            num_heads:
            qkv_bias:
            qkv_fused:
            mlp_ratio:
            swiglu_mlp:
            scale_mlp:
            scale_attn_inner:
            proj_drop:
            attn_drop:
            drop_path:
            init_values:
            act_layer:
            norm_layer:
            attn_head_dim:
        """
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = EvaAttention(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qkv_fused=qkv_fused,
            attn_drop=attn_drop,
            proj_drop=proj_drop,
            attn_head_dim=attn_head_dim,
            norm_layer=norm_layer if scale_attn_inner else None,
        )
        self.gamma_1 = nn.Parameter(init_values * torch.ones(dim)) if init_values is not None else None
        self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()

        self.norm2 = norm_layer(dim)
        hidden_features = int(dim * mlp_ratio)
        if swiglu_mlp:
            if scale_mlp:
                # when norm in SwiGLU used, an impl with separate fc for gate & x is used
                self.mlp = SwiGLU(
                    in_features=dim,
                    hidden_features=hidden_features,
                    norm_layer=norm_layer if scale_mlp else None,
                    drop=proj_drop,
                )
            else:
                # w/o any extra norm, an impl with packed weights is used, matches existing GluMLP
                self.mlp = GluMlp(
                    in_features=dim,
                    hidden_features=hidden_features * 2,
                    norm_layer=norm_layer if scale_mlp else None,
                    act_layer=nn.SiLU,
                    gate_last=False,
                    drop=proj_drop,
                )
        else:
            self.mlp = Mlp(
                in_features=dim,
                hidden_features=hidden_features,
                act_layer=act_layer,
                norm_layer=norm_layer if scale_mlp else None,
                drop=proj_drop,
            )
        self.gamma_2 = nn.Parameter(init_values * torch.ones(dim)) if init_values is not None else None
        self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()

    def forward(self, x, rope: Optional[torch.Tensor] = None, attn_mask: Optional[torch.Tensor] = None):
        if self.gamma_1 is None:
            x = x + self.drop_path1(self.attn(self.norm1(x), rope=rope, attn_mask=attn_mask))
            x = x + self.drop_path2(self.mlp(self.norm2(x)))
        else:
            x = x + self.drop_path1(self.gamma_1 * self.attn(self.norm1(x), rope=rope, attn_mask=attn_mask))
            x = x + self.drop_path2(self.gamma_2 * self.mlp(self.norm2(x)))
        return x


class EvaBlockPostNorm(nn.Module):
    """ EVA block w/ post-norm and support for swiglu, MLP norm scale, ROPE. """
    def __init__(
            self,
            dim: int,
            num_heads: int,
            qkv_bias: bool = True,
            qkv_fused: bool = True,
            mlp_ratio: float = 4.,
            swiglu_mlp: bool = False,
            scale_mlp: bool = False,
            scale_attn_inner: bool = False,
            proj_drop: float = 0.,
            attn_drop: float = 0.,
            drop_path: float = 0.,
            init_values: Optional[float] = None,  # ignore for post-norm
            act_layer: Callable = nn.GELU,
            norm_layer: Callable = nn.LayerNorm,
            attn_head_dim: Optional[int] = None,
    ):
        """

        Args:
            dim:
            num_heads:
            qkv_bias:
            qkv_fused:
            mlp_ratio:
            swiglu_mlp:
            scale_mlp:
            scale_attn_inner:
            proj_drop:
            attn_drop:
            drop_path:
            init_values:
            act_layer:
            norm_layer:
            attn_head_dim:
        """
        super().__init__()
        self.attn = EvaAttention(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qkv_fused=qkv_fused,
            attn_drop=attn_drop,
            proj_drop=proj_drop,
            attn_head_dim=attn_head_dim,
            norm_layer=norm_layer if scale_attn_inner else None,
        )
        self.norm1 = norm_layer(dim)
        self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()

        hidden_features = int(dim * mlp_ratio)
        if swiglu_mlp:
            if scale_mlp:
                # when norm in SwiGLU used, an impl with separate fc for gate & x is used
                self.mlp = SwiGLU(
                    in_features=dim,
                    hidden_features=hidden_features,
                    norm_layer=norm_layer if scale_mlp else None,
                    drop=proj_drop,
                )
            else:
                # w/o any extra norm, an impl with packed fc1 weights is used, matches existing GluMLP
                self.mlp = GluMlp(
                    in_features=dim,
                    hidden_features=hidden_features * 2,
                    norm_layer=norm_layer if scale_mlp else None,
                    act_layer=nn.SiLU,
                    gate_last=False,
                    drop=proj_drop,
                )
        else:
            self.mlp = Mlp(
                in_features=dim,
                hidden_features=hidden_features,
                act_layer=act_layer,
                norm_layer=norm_layer if scale_mlp else None,
                drop=proj_drop,
            )
        self.norm2 = norm_layer(dim)
        self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()

    def forward(self, x, rope: Optional[torch.Tensor] = None, attn_mask: Optional[torch.Tensor] = None):
        x = x + self.drop_path1(self.norm1(self.attn(x, rope=rope, attn_mask=attn_mask)))
        x = x + self.drop_path2(self.norm2(self.mlp(x)))
        return x


class Eva(nn.Module):
    """ Eva Vision Transformer w/ Abs & Rotary Pos Embed

    This class implements the EVA and EVA02 models that were based on the BEiT ViT variant
      * EVA - abs pos embed, global avg pool
      * EVA02 - abs + rope pos embed, global avg pool, SwiGLU, scale Norm in MLP (ala normformer)
    """

    def __init__(
            self,
            img_size: Union[int, Tuple[int, int]] = 224,
            patch_size: Union[int, Tuple[int, int]] = 16,
            in_chans: int = 3,
            num_classes: int = 1000,
            global_pool: str = 'avg',
            embed_dim: int = 768,
            depth: int = 12,
            num_heads: int = 12,
            qkv_bias: bool = True,
            qkv_fused: bool = True,
            mlp_ratio: float = 4.,
            swiglu_mlp: bool = False,
            scale_mlp: bool = False,
            scale_attn_inner: bool = False,
            drop_rate: float = 0.,
            pos_drop_rate: float = 0.,
            patch_drop_rate: float = 0.,
            proj_drop_rate: float = 0.,
            attn_drop_rate: float = 0.,
            drop_path_rate: float = 0.,
            norm_layer: Callable = LayerNorm,
            init_values: Optional[float] = None,
            class_token: bool = True,
            use_abs_pos_emb: bool = True,
            use_rot_pos_emb: bool = False,
            use_post_norm: bool = False,
            dynamic_img_size: bool = False,
            dynamic_img_pad: bool = False,
            ref_feat_shape: Optional[Union[Tuple[int, int], int]] = None,
            head_init_scale: float = 0.001,
    ):
        """

        Args:
            img_size:
            patch_size:
            in_chans:
            num_classes:
            global_pool:
            embed_dim:
            depth:
            num_heads:
            qkv_bias:
            qkv_fused:
            mlp_ratio:
            swiglu_mlp:
            scale_mlp:
            scale_attn_inner:
            drop_rate:
            pos_drop_rate:
            proj_drop_rate:
            attn_drop_rate:
            drop_path_rate:
            norm_layer:
            init_values:
            class_token:
            use_abs_pos_emb:
            use_rot_pos_emb:
            use_post_norm:
            ref_feat_shape:
            head_init_scale:
        """
        super().__init__()
        self.num_classes = num_classes
        self.global_pool = global_pool
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
        self.num_prefix_tokens = 1 if class_token else 0
        self.dynamic_img_size = dynamic_img_size
        self.grad_checkpointing = False

        embed_args = {}
        if dynamic_img_size:
            # flatten deferred until after pos embed
            embed_args.update(dict(strict_img_size=False, output_fmt='NHWC'))
        self.patch_embed = PatchEmbed(
            img_size=img_size,
            patch_size=patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim,
            dynamic_img_pad=dynamic_img_pad,
            **embed_args,
        )
        num_patches = self.patch_embed.num_patches
        r = self.patch_embed.feat_ratio() if hasattr(self.patch_embed, 'feat_ratio') else patch_size

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if class_token else None

        self.pos_embed = nn.Parameter(
            torch.zeros(1, num_patches + self.num_prefix_tokens, embed_dim)) if use_abs_pos_emb else None
        self.pos_drop = nn.Dropout(p=pos_drop_rate)
        if patch_drop_rate > 0:
            self.patch_drop = PatchDropout(
                patch_drop_rate,
                num_prefix_tokens=self.num_prefix_tokens,
                return_indices=True,
            )
        else:
            self.patch_drop = None

        if use_rot_pos_emb:
            ref_feat_shape = to_2tuple(ref_feat_shape) if ref_feat_shape is not None else None
            self.rope = RotaryEmbeddingCat(
                embed_dim // num_heads,
                in_pixels=False,
                feat_shape=None if dynamic_img_size else self.patch_embed.grid_size,
                ref_feat_shape=ref_feat_shape,
            )
        else:
            self.rope = None

        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule
        block_fn = EvaBlockPostNorm if use_post_norm else EvaBlock
        self.blocks = nn.ModuleList([
            block_fn(
                dim=embed_dim,
                num_heads=num_heads,
                qkv_bias=qkv_bias,
                qkv_fused=qkv_fused,
                mlp_ratio=mlp_ratio,
                swiglu_mlp=swiglu_mlp,
                scale_mlp=scale_mlp,
                scale_attn_inner=scale_attn_inner,
                proj_drop=proj_drop_rate,
                attn_drop=attn_drop_rate,
                drop_path=dpr[i],
                norm_layer=norm_layer,
                init_values=init_values,
            )
            for i in range(depth)])
        self.feature_info = [
            dict(module=f'blocks.{i}', num_chs=embed_dim, reduction=r) for i in range(depth)]

        use_fc_norm = self.global_pool == 'avg'
        self.norm = nn.Identity() if use_fc_norm else norm_layer(embed_dim)
        self.fc_norm = norm_layer(embed_dim) if use_fc_norm else nn.Identity()
        self.head_drop = nn.Dropout(drop_rate)
        self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()

        self.apply(self._init_weights)
        if self.pos_embed is not None:
            trunc_normal_(self.pos_embed, std=.02)
        if self.cls_token is not None:
            trunc_normal_(self.cls_token, std=.02)

        self.fix_init_weight()
        if isinstance(self.head, nn.Linear):
            trunc_normal_(self.head.weight, std=.02)
            self.head.weight.data.mul_(head_init_scale)
            self.head.bias.data.mul_(head_init_scale)

    def fix_init_weight(self):
        def rescale(param, layer_id):
            param.div_(math.sqrt(2.0 * layer_id))

        for layer_id, layer in enumerate(self.blocks):
            rescale(layer.attn.proj.weight.data, layer_id + 1)
            rescale(layer.mlp.fc2.weight.data, layer_id + 1)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if m.bias is not None:
                nn.init.zeros_(m.bias)

    @torch.jit.ignore
    def no_weight_decay(self):
        nwd = {'pos_embed', 'cls_token'}
        return nwd

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        self.grad_checkpointing = enable

    @torch.jit.ignore
    def group_matcher(self, coarse=False):
        matcher = dict(
            stem=r'^cls_token|pos_embed|patch_embed',  # stem and embed
            blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))],
        )
        return matcher

    @torch.jit.ignore
    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes, global_pool=None):
        self.num_classes = num_classes
        if global_pool is not None:
            self.global_pool = global_pool
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()

    def _pos_embed(self, x) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
        if self.dynamic_img_size:
            B, H, W, C = x.shape
            if self.pos_embed is not None:
                pos_embed = resample_abs_pos_embed(
                    self.pos_embed,
                    (H, W),
                    num_prefix_tokens=self.num_prefix_tokens,
                )
            else:
                pos_embed = None
            x = x.view(B, -1, C)
            rot_pos_embed = self.rope.get_embed(shape=(H, W)) if self.rope is not None else None
        else:
            pos_embed = self.pos_embed
            rot_pos_embed = self.rope.get_embed() if self.rope is not None else None

        if self.cls_token is not None:
            x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
        if pos_embed is not None:
            x = x + pos_embed
        x = self.pos_drop(x)

        # obtain shared rotary position embedding and apply patch dropout
        if self.patch_drop is not None:
            x, keep_indices = self.patch_drop(x)
            if rot_pos_embed is not None and keep_indices is not None:
                rot_pos_embed = apply_keep_indices_nlc(x, rot_pos_embed, keep_indices)
        return x, rot_pos_embed

    def forward_intermediates(
            self,
            x: torch.Tensor,
            indices: Optional[Union[int, List[int], Tuple[int]]] = None,
            return_prefix_tokens: bool = False,
            norm: bool = False,
            stop_early: bool = True,
            output_fmt: str = 'NCHW',
            intermediates_only: bool = False,
    ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
        """ Forward features that returns intermediates.
        Args:
            x: Input image tensor
            indices: Take last n blocks if an int, if is a sequence, select by matching indices
            return_prefix_tokens: Return both prefix and spatial intermediate tokens
            norm: Apply norm layer to all intermediates
            stop_early: Stop iterating over blocks when last desired intermediate hit
            output_fmt: Shape of intermediate feature outputs
            intermediates_only: Only return intermediate features
        """
        assert output_fmt in ('NCHW', 'NLC'), 'Output format for EVA-ViT features must be one of NCHW or NLC.'
        reshape = output_fmt == 'NCHW'
        intermediates = []
        take_indices, max_index = feature_take_indices(len(self.blocks), indices)

        # forward pass
        B, _, height, width = x.shape
        x = self.patch_embed(x)
        x, rot_pos_embed = self._pos_embed(x)
        if torch.jit.is_scripting() or not stop_early:  # can't slice blocks in torchscript
            blocks = self.blocks
        else:
            blocks = self.blocks[:max_index + 1]
        for i, blk in enumerate(blocks):
            x = blk(x, rope=rot_pos_embed)
            if i in take_indices:
                intermediates.append(self.norm(x) if norm else x)

        # process intermediates
        if self.num_prefix_tokens:
            # split prefix (e.g. class, distill) and spatial feature tokens
            prefix_tokens = [y[:, 0:self.num_prefix_tokens] for y in intermediates]
            intermediates = [y[:, self.num_prefix_tokens:] for y in intermediates]
        if reshape:
            # reshape to BCHW output format
            H, W = self.patch_embed.dynamic_feat_size((height, width))
            intermediates = [y.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for y in intermediates]
        if not torch.jit.is_scripting() and return_prefix_tokens:
            # return_prefix not support in torchscript due to poor type handling
            intermediates = list(zip(intermediates, prefix_tokens))

        if intermediates_only:
            return intermediates

        x = self.norm(x)

        return x, intermediates

    def prune_intermediate_layers(
            self,
            n: Union[int, List[int], Tuple[int]] = 1,
            prune_norm: bool = False,
            prune_head: bool = True,
    ):
        """ Prune layers not required for specified intermediates.
        """
        take_indices, max_index = feature_take_indices(len(self.blocks), n)
        self.blocks = self.blocks[:max_index + 1]  # truncate blocks
        if prune_norm:
            self.norm = nn.Identity()
        if prune_head:
            self.fc_norm = nn.Identity()
            self.head = nn.Identity()
        return take_indices

    def forward_features(self, x):
        x = self.patch_embed(x)
        x, rot_pos_embed = self._pos_embed(x)
        for blk in self.blocks:
            if self.grad_checkpointing and not torch.jit.is_scripting():
                x = checkpoint(blk, x, rope=rot_pos_embed)
            else:
                x = blk(x, rope=rot_pos_embed)
        x = self.norm(x)
        return x

    def forward_head(self, x, pre_logits: bool = False):
        if self.global_pool:
            x = x[:, self.num_prefix_tokens:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0]
        x = self.fc_norm(x)
        x = self.head_drop(x)
        return x if pre_logits else self.head(x)

    def forward(self, x):
        x = self.forward_features(x)
        x = self.forward_head(x)
        return x


def checkpoint_filter_fn(
        state_dict,
        model,
        interpolation='bicubic',
        antialias=True,
):
    """ convert patch embedding weight from manual patchify + linear proj to conv"""
    out_dict = {}
    state_dict = state_dict.get('model_ema', state_dict)
    state_dict = state_dict.get('model', state_dict)
    state_dict = state_dict.get('module', state_dict)
    state_dict = state_dict.get('state_dict', state_dict)
    # prefix for loading OpenCLIP compatible weights
    if 'visual.trunk.pos_embed' in state_dict:
        prefix = 'visual.trunk.'
    elif 'visual.pos_embed' in state_dict:
        prefix = 'visual.'
    else:
        prefix = ''
    mim_weights = prefix + 'mask_token' in state_dict
    no_qkv = prefix + 'blocks.0.attn.q_proj.weight' in state_dict

    len_prefix = len(prefix)
    for k, v in state_dict.items():
        if prefix:
            if k.startswith(prefix):
                k = k[len_prefix:]
            else:
                continue

        if 'rope' in k:
            # fixed embedding no need to load buffer from checkpoint
            continue

        if 'patch_embed.proj.weight' in k:
            _, _, H, W = model.patch_embed.proj.weight.shape
            if v.shape[-1] != W or v.shape[-2] != H:
                v = resample_patch_embed(
                    v,
                    (H, W),
                    interpolation=interpolation,
                    antialias=antialias,
                    verbose=True,
                )
        elif k == 'pos_embed' and v.shape[1] != model.pos_embed.shape[1]:
            # To resize pos embedding when using model at different size from pretrained weights
            num_prefix_tokens = 0 if getattr(model, 'no_embed_class', False) else getattr(model, 'num_prefix_tokens', 1)
            v = resample_abs_pos_embed(
                v,
                new_size=model.patch_embed.grid_size,
                num_prefix_tokens=num_prefix_tokens,
                interpolation=interpolation,
                antialias=antialias,
                verbose=True,
            )

        k = k.replace('mlp.ffn_ln', 'mlp.norm')
        k = k.replace('attn.inner_attn_ln', 'attn.norm')
        k = k.replace('mlp.w12', 'mlp.fc1')
        k = k.replace('mlp.w1', 'mlp.fc1_g')
        k = k.replace('mlp.w2', 'mlp.fc1_x')
        k = k.replace('mlp.w3', 'mlp.fc2')
        if no_qkv:
            k = k.replace('q_bias', 'q_proj.bias')
            k = k.replace('v_bias', 'v_proj.bias')

        if mim_weights and k in ('mask_token', 'lm_head.weight', 'lm_head.bias', 'norm.weight', 'norm.bias'):
            if k == 'norm.weight' or k == 'norm.bias':
                # try moving norm -> fc norm on fine-tune, probably a better starting point than new init
                k = k.replace('norm', 'fc_norm')
            else:
                # skip pretrain mask token & head weights
                continue

        out_dict[k] = v

    return out_dict


def _create_eva(variant, pretrained=False, **kwargs):
    out_indices = kwargs.pop('out_indices', 3)
    model = build_model_with_cfg(
        Eva, variant, pretrained,
        pretrained_filter_fn=checkpoint_filter_fn,
        feature_cfg=dict(out_indices=out_indices, feature_cls='getter'),
        **kwargs,
    )
    return model


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
        'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
        'mean': OPENAI_CLIP_MEAN, 'std': OPENAI_CLIP_STD,
        'first_conv': 'patch_embed.proj', 'classifier': 'head',
        'license': 'mit', **kwargs
    }


default_cfgs = generate_default_cfgs({

    # EVA 01 CLIP fine-tuned on imagenet-1k
    'eva_giant_patch14_224.clip_ft_in1k': _cfg(
        # hf_hub_id='BAAI/EVA', hf_hub_filename='eva_clip_vis_enc_sz224_ftcls_89p1.pt',
        hf_hub_id='timm/',
    ),
    'eva_giant_patch14_336.clip_ft_in1k': _cfg(
        # hf_hub_id='BAAI/EVA', hf_hub_filename='eva_clip_vis_enc_sz336_ftcls_89p4.pt',
        hf_hub_id='timm/',
        input_size=(3, 336, 336), crop_pct=1.0, crop_mode='squash'),

    # MIM EVA 01 pretrain, ft on in22k -> in1k
    'eva_giant_patch14_336.m30m_ft_in22k_in1k': _cfg(
        # hf_hub_id='BAAI/EVA', hf_hub_filename='eva_21k_1k_336px_psz14_ema_89p6.pt',
        hf_hub_id='timm/',
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD,
        input_size=(3, 336, 336), crop_pct=1.0, crop_mode='squash'),
    'eva_giant_patch14_560.m30m_ft_in22k_in1k': _cfg(
        # hf_hub_id='BAAI/EVA', hf_hub_filename='eva_21k_1k_560px_psz14_ema_89p7.pt',
        hf_hub_id='timm/',
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD,
        input_size=(3, 560, 560), crop_pct=1.0, crop_mode='squash'),

    # in22k or m38m MIM pretrain w/ intermediate in22k fine-tune and final in1k fine-tune
    'eva02_base_patch14_448.mim_in22k_ft_in22k_in1k': _cfg(
        # hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/cls/in21k_to_in1k/eva02_B_pt_in21k_medft_in21k_ft_in1k_p14.pt',
        hf_hub_id='timm/',
        input_size=(3, 448, 448), crop_pct=1.0, crop_mode='squash',
    ),
    'eva02_large_patch14_448.mim_in22k_ft_in22k_in1k': _cfg(
        # hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/cls/in21k_to_in1k/eva02_L_pt_in21k_medft_in21k_ft_in1k_p14.pt',
        hf_hub_id='timm/',
        input_size=(3, 448, 448), crop_pct=1.0, crop_mode='squash',
    ),
    'eva02_large_patch14_448.mim_m38m_ft_in22k_in1k': _cfg(
        hf_hub_id='timm/',
        #hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/cls/in21k_to_in1k/eva02_L_pt_m38m_medft_in21k_ft_in1k_p14.pt',
        input_size=(3, 448, 448), crop_pct=1.0, crop_mode='squash',
    ),

    # in22k or m3m MIM pretrain w/ in1k fine-tune
    'eva02_tiny_patch14_336.mim_in22k_ft_in1k': _cfg(
        #hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/cls/in1k/eva02_Ti_pt_in21k_ft_in1k_p14.pt',
        hf_hub_id='timm/',
        input_size=(3, 336, 336), crop_pct=1.0,
    ),
    'eva02_small_patch14_336.mim_in22k_ft_in1k': _cfg(
        #hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/cls/in1k/eva02_S_pt_in21k_ft_in1k_p14.pt',
        hf_hub_id='timm/',
        input_size=(3, 336, 336), crop_pct=1.0,
    ),
    'eva02_base_patch14_448.mim_in22k_ft_in1k': _cfg(
        #hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/cls/in1k/eva02_B_pt_in21k_ft_in1k_p14.pt',
        hf_hub_id='timm/',
        input_size=(3, 448, 448), crop_pct=1.0,
    ),
    'eva02_large_patch14_448.mim_in22k_ft_in1k': _cfg(
        #hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/cls/in1k/eva02_L_pt_in21k_ft_in1k_p14.pt',
        hf_hub_id='timm/',
        input_size=(3, 448, 448), crop_pct=1.0,
    ),
    'eva02_large_patch14_448.mim_m38m_ft_in1k': _cfg(
        #hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/cls/in1k/eva02_L_pt_m38m_ft_in1k_p14.pt',
        hf_hub_id='timm/',
        input_size=(3, 448, 448), crop_pct=1.0,
    ),

    # in22k or m3m MIM pretrain w/ in22k fine-tune
    'eva02_base_patch14_448.mim_in22k_ft_in22k': _cfg(
        #hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/cls/in21k/eva02_B_pt_in21k_medft_in21k_p14.pt',
        hf_hub_id='timm/',
        input_size=(3, 448, 448), crop_pct=1.0, crop_mode='squash', num_classes=21841,
    ),
    'eva02_large_patch14_448.mim_in22k_ft_in22k': _cfg(
        #hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/cls/in21k/eva02_L_pt_in21k_medft_in21k_p14.pt',
        hf_hub_id='timm/',
        input_size=(3, 448, 448), crop_pct=1.0, crop_mode='squash', num_classes=21841,
    ),
    'eva02_large_patch14_448.mim_m38m_ft_in22k': _cfg(
        #hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/cls/in21k/eva02_L_pt_m38m_medft_in21k_p14.pt',
        hf_hub_id='timm/',
        input_size=(3, 448, 448), crop_pct=1.0, crop_mode='squash', num_classes=21841,
    ),

    # in22k or m38m MIM pretrain
    'eva02_tiny_patch14_224.mim_in22k': _cfg(
        # hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/pt/eva02_Ti_pt_in21k_p14.pt',
        hf_hub_id='timm/',
        num_classes=0,
    ),
    'eva02_small_patch14_224.mim_in22k': _cfg(
        #hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/pt/eva02_S_pt_in21k_p14.pt',
        hf_hub_id='timm/',
        num_classes=0,
    ),
    'eva02_base_patch14_224.mim_in22k': _cfg(
        #hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/pt/eva02_B_pt_in21k_p14.pt',
        hf_hub_id='timm/',
        num_classes=0,
    ),
    'eva02_large_patch14_224.mim_in22k': _cfg(
        #hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/pt/eva02_L_pt_in21k_p14.pt',
        hf_hub_id='timm/',
        num_classes=0,
    ),
    'eva02_large_patch14_224.mim_m38m': _cfg(
        #hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/pt/eva02_L_pt_m38m_p14.pt',
        hf_hub_id='timm/',
        num_classes=0,
    ),

    # EVA01 and EVA02 CLIP image towers
    'eva_giant_patch14_clip_224.laion400m': _cfg(
        # hf_hub_id='QuanSun/EVA-CLIP', hf_hub_filename='EVA01_CLIP_g_14_plus_psz14_s11B.pt',
        hf_hub_id='timm/eva_giant_patch14_clip_224.laion400m_s11b_b41k',  # float16 weights
        hf_hub_filename='open_clip_pytorch_model.bin',
        num_classes=1024,
    ),
    'eva_giant_patch14_clip_224.merged2b': _cfg(
        # hf_hub_id='QuanSun/EVA-CLIP', hf_hub_filename='EVA01_CLIP_g_14_plus_psz14_s11B.pt',
        hf_hub_id='timm/eva_giant_patch14_plus_clip_224.merged2b_s11b_b114k',  # float16 weights
        hf_hub_filename='open_clip_pytorch_model.bin',
        num_classes=1024,
    ),
    'eva02_base_patch16_clip_224.merged2b': _cfg(
        # hf_hub_id='QuanSun/EVA-CLIP', hf_hub_filename='EVA02_CLIP_L_psz14_s4B.pt',
        hf_hub_id='timm/eva02_base_patch16_clip_224.merged2b_s8b_b131k',  # float16 weights
        hf_hub_filename='open_clip_pytorch_model.bin',
        num_classes=512,
    ),
    'eva02_large_patch14_clip_224.merged2b': _cfg(
        # hf_hub_id='QuanSun/EVA-CLIP', hf_hub_filename='EVA02_CLIP_L_psz14_s4B.pt',
        hf_hub_id='timm/eva02_large_patch14_clip_224.merged2b_s4b_b131k',  # float16 weights
        hf_hub_filename='open_clip_pytorch_model.bin',
        num_classes=768,
    ),
    'eva02_large_patch14_clip_336.merged2b': _cfg(
        # hf_hub_id='QuanSun/EVA-CLIP', hf_hub_filename='EVA02_CLIP_L_psz14_s4B.pt',
        hf_hub_id='timm/eva02_large_patch14_clip_336.merged2b_s6b_b61k',  # float16 weights
        hf_hub_filename='open_clip_pytorch_model.bin',
        input_size=(3, 336, 336), crop_pct=1.0,
        num_classes=768,
    ),
    'eva02_enormous_patch14_clip_224.laion2b': _cfg(
        # hf_hub_id='QuanSun/EVA-CLIP', hf_hub_filename='EVA02_CLIP_E_psz14_plus_s9B.pt',
        hf_hub_id='timm/eva02_enormous_patch14_clip_224.laion2b_s4b_b115k',  # float16 weights
        hf_hub_filename='open_clip_pytorch_model.bin',
        num_classes=1024,
    ),
    'eva02_enormous_patch14_clip_224.laion2b_plus': _cfg(
        # hf_hub_id='QuanSun/EVA-CLIP', hf_hub_filename='EVA02_CLIP_E_psz14_plus_s9B.pt',
        hf_hub_id='timm/eva02_enormous_patch14_plus_clip_224.laion2b_s9b_b144k',  # bfloat16 weights
        hf_hub_filename='open_clip_pytorch_model.bin',
        num_classes=1024,
    ),
    'eva02_enormous_patch14_clip_224.pretrain': _cfg(
        # hf_hub_id='QuanSun/EVA-CLIP', hf_hub_filename='EVA02_E_psz14.pt',
        num_classes=0,
    ),

})


@register_model
def eva_giant_patch14_224(pretrained=False, **kwargs) -> Eva:
    """ EVA-g model https://arxiv.org/abs/2211.07636 """
    model_args = dict(patch_size=14, embed_dim=1408, depth=40, num_heads=16, mlp_ratio=6144 / 1408)
    model = _create_eva('eva_giant_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def eva_giant_patch14_336(pretrained=False, **kwargs) -> Eva:
    """ EVA-g model https://arxiv.org/abs/2211.07636 """
    model_args = dict(patch_size=14, embed_dim=1408, depth=40, num_heads=16, mlp_ratio=6144 / 1408)
    model = _create_eva('eva_giant_patch14_336', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def eva_giant_patch14_560(pretrained=False, **kwargs) -> Eva:
    """ EVA-g model https://arxiv.org/abs/2211.07636 """
    model_args = dict(patch_size=14, embed_dim=1408, depth=40, num_heads=16, mlp_ratio=6144 / 1408)
    model = _create_eva('eva_giant_patch14_560', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def eva02_tiny_patch14_224(pretrained=False, **kwargs) -> Eva:
    model_args = dict(
        img_size=224,
        patch_size=14,
        embed_dim=192,
        depth=12,
        num_heads=3,
        mlp_ratio=4 * 2 / 3,
        swiglu_mlp=True,
        use_rot_pos_emb=True,
        ref_feat_shape=(16, 16),  # 224/14
    )
    model = _create_eva('eva02_tiny_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def eva02_small_patch14_224(pretrained=False, **kwargs) -> Eva:
    model_args = dict(
        img_size=224,
        patch_size=14,
        embed_dim=384,
        depth=12,
        num_heads=6,
        mlp_ratio=4 * 2 / 3,
        swiglu_mlp=True,
        use_rot_pos_emb=True,
        ref_feat_shape=(16, 16),  # 224/14
    )
    model = _create_eva('eva02_small_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def eva02_base_patch14_224(pretrained=False, **kwargs) -> Eva:
    model_args = dict(
        img_size=224,
        patch_size=14,
        embed_dim=768,
        depth=12,
        num_heads=12,
        qkv_fused=False,
        mlp_ratio=4 * 2 / 3,
        swiglu_mlp=True,
        scale_mlp=True,
        use_rot_pos_emb=True,
        ref_feat_shape=(16, 16),  # 224/14
    )
    model = _create_eva('eva02_base_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def eva02_large_patch14_224(pretrained=False, **kwargs) -> Eva:
    model_args = dict(
        img_size=224,
        patch_size=14,
        embed_dim=1024,
        depth=24,
        num_heads=16,
        mlp_ratio=4 * 2 / 3,
        qkv_fused=False,
        swiglu_mlp=True,
        scale_mlp=True,
        use_rot_pos_emb=True,
        ref_feat_shape=(16, 16),  # 224/14
    )
    model = _create_eva('eva02_large_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def eva02_tiny_patch14_336(pretrained=False, **kwargs) -> Eva:
    model_args = dict(
        img_size=336,
        patch_size=14,
        embed_dim=192,
        depth=12,
        num_heads=3,
        mlp_ratio=4 * 2 / 3,
        swiglu_mlp=True,
        use_rot_pos_emb=True,
        ref_feat_shape=(16, 16),  # 224/14
    )
    model = _create_eva('eva02_tiny_patch14_336', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def eva02_small_patch14_336(pretrained=False, **kwargs) -> Eva:
    model_args = dict(
        img_size=336,
        patch_size=14,
        embed_dim=384,
        depth=12,
        num_heads=6,
        mlp_ratio=4 * 2 / 3,
        swiglu_mlp=True,
        use_rot_pos_emb=True,
        ref_feat_shape=(16, 16),  # 224/14
    )
    model = _create_eva('eva02_small_patch14_336', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def eva02_base_patch14_448(pretrained=False, **kwargs) -> Eva:
    model_args = dict(
        img_size=448,
        patch_size=14,
        embed_dim=768,
        depth=12,
        num_heads=12,
        qkv_fused=False,
        mlp_ratio=4 * 2 / 3,
        swiglu_mlp=True,
        scale_mlp=True,
        use_rot_pos_emb=True,
        ref_feat_shape=(16, 16),  # 224/14
    )
    model = _create_eva('eva02_base_patch14_448', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def eva02_large_patch14_448(pretrained=False, **kwargs) -> Eva:
    model_args = dict(
        img_size=448,
        patch_size=14,
        embed_dim=1024,
        depth=24,
        num_heads=16,
        mlp_ratio=4 * 2 / 3,
        qkv_fused=False,
        swiglu_mlp=True,
        scale_mlp=True,
        use_rot_pos_emb=True,
        ref_feat_shape=(16, 16),  # 224/14
    )
    model = _create_eva('eva02_large_patch14_448', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def eva_giant_patch14_clip_224(pretrained=False, **kwargs) -> Eva:
    """ EVA-g CLIP model (only difference from non-CLIP is the pooling)  """
    model_args = dict(
        patch_size=14, embed_dim=1408, depth=40, num_heads=16, mlp_ratio=6144 / 1408,
        global_pool=kwargs.pop('global_pool', 'token'))
    model = _create_eva('eva_giant_patch14_clip_224', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def eva02_base_patch16_clip_224(pretrained=False, **kwargs) -> Eva:
    """ A EVA-CLIP specific variant that adds additional attn scale layernorm to eva02_base """
    model_args = dict(
        img_size=224,
        patch_size=16,
        embed_dim=768,
        depth=12,
        num_heads=12,
        qkv_fused=False,
        mlp_ratio=4 * 2 / 3,
        swiglu_mlp=True,
        scale_mlp=True,
        scale_attn_inner=True,
        use_rot_pos_emb=True,
        ref_feat_shape=(16, 16),  # 224/14
        global_pool=kwargs.pop('global_pool', 'token'),
    )
    model = _create_eva('eva02_base_patch16_clip_224', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def eva02_large_patch14_clip_224(pretrained=False, **kwargs) -> Eva:
    """ A EVA-CLIP specific variant that adds additional attn scale layernorm to eva02_large """
    model_args = dict(
        img_size=224,
        patch_size=14,
        embed_dim=1024,
        depth=24,
        num_heads=16,
        mlp_ratio=4 * 2 / 3,
        qkv_fused=False,
        swiglu_mlp=True,
        scale_mlp=True,
        scale_attn_inner=True,
        use_rot_pos_emb=True,
        ref_feat_shape=(16, 16),  # 224/14
        global_pool=kwargs.pop('global_pool', 'token'),
    )
    model = _create_eva('eva02_large_patch14_clip_224', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def eva02_large_patch14_clip_336(pretrained=False, **kwargs) -> Eva:
    """ A EVA-CLIP specific variant that adds additional attn scale layernorm to eva02_large """
    model_args = dict(
        img_size=336,
        patch_size=14,
        embed_dim=1024,
        depth=24,
        num_heads=16,
        mlp_ratio=4 * 2 / 3,
        qkv_fused=False,
        swiglu_mlp=True,
        scale_mlp=True,
        scale_attn_inner=True,
        use_rot_pos_emb=True,
        ref_feat_shape=(16, 16),  # 224/14
        global_pool=kwargs.pop('global_pool', 'token'),
    )
    model = _create_eva('eva02_large_patch14_clip_336', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def eva02_enormous_patch14_clip_224(pretrained=False, **kwargs) -> Eva:
    """ A EVA-CLIP specific variant that uses residual post-norm in blocks """
    model_args = dict(
        img_size=224,
        patch_size=14,
        embed_dim=1792,
        depth=64,
        num_heads=16,
        mlp_ratio=15360 / 1792,
        use_post_norm=True,
        global_pool=kwargs.pop('global_pool', 'token'),
    )
    model = _create_eva('eva02_enormous_patch14_clip_224', pretrained=pretrained, **dict(model_args, **kwargs))
    return model