File size: 40,060 Bytes
786f6a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 |
"""PyTorch CspNet
A PyTorch implementation of Cross Stage Partial Networks including:
* CSPResNet50
* CSPResNeXt50
* CSPDarkNet53
* and DarkNet53 for good measure
Based on paper `CSPNet: A New Backbone that can Enhance Learning Capability of CNN` - https://arxiv.org/abs/1911.11929
Reference impl via darknet cfg files at https://github.com/WongKinYiu/CrossStagePartialNetworks
Hacked together by / Copyright 2020 Ross Wightman
"""
from dataclasses import dataclass, asdict, replace
from functools import partial
from typing import Any, Dict, Optional, Tuple, Union
import torch
import torch.nn as nn
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import ClassifierHead, ConvNormAct, ConvNormActAa, DropPath, get_attn, create_act_layer, make_divisible
from ._builder import build_model_with_cfg
from ._manipulate import named_apply, MATCH_PREV_GROUP
from ._registry import register_model, generate_default_cfgs
__all__ = ['CspNet'] # model_registry will add each entrypoint fn to this
@dataclass
class CspStemCfg:
out_chs: Union[int, Tuple[int, ...]] = 32
stride: Union[int, Tuple[int, ...]] = 2
kernel_size: int = 3
padding: Union[int, str] = ''
pool: Optional[str] = ''
def _pad_arg(x, n):
# pads an argument tuple to specified n by padding with last value
if not isinstance(x, (tuple, list)):
x = (x,)
curr_n = len(x)
pad_n = n - curr_n
if pad_n <= 0:
return x[:n]
return tuple(x + (x[-1],) * pad_n)
@dataclass
class CspStagesCfg:
depth: Tuple[int, ...] = (3, 3, 5, 2) # block depth (number of block repeats in stages)
out_chs: Tuple[int, ...] = (128, 256, 512, 1024) # number of output channels for blocks in stage
stride: Union[int, Tuple[int, ...]] = 2 # stride of stage
groups: Union[int, Tuple[int, ...]] = 1 # num kxk conv groups
block_ratio: Union[float, Tuple[float, ...]] = 1.0
bottle_ratio: Union[float, Tuple[float, ...]] = 1. # bottleneck-ratio of blocks in stage
avg_down: Union[bool, Tuple[bool, ...]] = False
attn_layer: Optional[Union[str, Tuple[str, ...]]] = None
attn_kwargs: Optional[Union[Dict, Tuple[Dict]]] = None
stage_type: Union[str, Tuple[str]] = 'csp' # stage type ('csp', 'cs2', 'dark')
block_type: Union[str, Tuple[str]] = 'bottle' # blocks type for stages ('bottle', 'dark')
# cross-stage only
expand_ratio: Union[float, Tuple[float, ...]] = 1.0
cross_linear: Union[bool, Tuple[bool, ...]] = False
down_growth: Union[bool, Tuple[bool, ...]] = False
def __post_init__(self):
n = len(self.depth)
assert len(self.out_chs) == n
self.stride = _pad_arg(self.stride, n)
self.groups = _pad_arg(self.groups, n)
self.block_ratio = _pad_arg(self.block_ratio, n)
self.bottle_ratio = _pad_arg(self.bottle_ratio, n)
self.avg_down = _pad_arg(self.avg_down, n)
self.attn_layer = _pad_arg(self.attn_layer, n)
self.attn_kwargs = _pad_arg(self.attn_kwargs, n)
self.stage_type = _pad_arg(self.stage_type, n)
self.block_type = _pad_arg(self.block_type, n)
self.expand_ratio = _pad_arg(self.expand_ratio, n)
self.cross_linear = _pad_arg(self.cross_linear, n)
self.down_growth = _pad_arg(self.down_growth, n)
@dataclass
class CspModelCfg:
stem: CspStemCfg
stages: CspStagesCfg
zero_init_last: bool = True # zero init last weight (usually bn) in residual path
act_layer: str = 'leaky_relu'
norm_layer: str = 'batchnorm'
aa_layer: Optional[str] = None # FIXME support string factory for this
def _cs3_cfg(
width_multiplier=1.0,
depth_multiplier=1.0,
avg_down=False,
act_layer='silu',
focus=False,
attn_layer=None,
attn_kwargs=None,
bottle_ratio=1.0,
block_type='dark',
):
if focus:
stem_cfg = CspStemCfg(
out_chs=make_divisible(64 * width_multiplier),
kernel_size=6, stride=2, padding=2, pool='')
else:
stem_cfg = CspStemCfg(
out_chs=tuple([make_divisible(c * width_multiplier) for c in (32, 64)]),
kernel_size=3, stride=2, pool='')
return CspModelCfg(
stem=stem_cfg,
stages=CspStagesCfg(
out_chs=tuple([make_divisible(c * width_multiplier) for c in (128, 256, 512, 1024)]),
depth=tuple([int(d * depth_multiplier) for d in (3, 6, 9, 3)]),
stride=2,
bottle_ratio=bottle_ratio,
block_ratio=0.5,
avg_down=avg_down,
attn_layer=attn_layer,
attn_kwargs=attn_kwargs,
stage_type='cs3',
block_type=block_type,
),
act_layer=act_layer,
)
class BottleneckBlock(nn.Module):
""" ResNe(X)t Bottleneck Block
"""
def __init__(
self,
in_chs,
out_chs,
dilation=1,
bottle_ratio=0.25,
groups=1,
act_layer=nn.ReLU,
norm_layer=nn.BatchNorm2d,
attn_last=False,
attn_layer=None,
drop_block=None,
drop_path=0.
):
super(BottleneckBlock, self).__init__()
mid_chs = int(round(out_chs * bottle_ratio))
ckwargs = dict(act_layer=act_layer, norm_layer=norm_layer)
attn_last = attn_layer is not None and attn_last
attn_first = attn_layer is not None and not attn_last
self.conv1 = ConvNormAct(in_chs, mid_chs, kernel_size=1, **ckwargs)
self.conv2 = ConvNormAct(
mid_chs, mid_chs, kernel_size=3, dilation=dilation, groups=groups,
drop_layer=drop_block, **ckwargs)
self.attn2 = attn_layer(mid_chs, act_layer=act_layer) if attn_first else nn.Identity()
self.conv3 = ConvNormAct(mid_chs, out_chs, kernel_size=1, apply_act=False, **ckwargs)
self.attn3 = attn_layer(out_chs, act_layer=act_layer) if attn_last else nn.Identity()
self.drop_path = DropPath(drop_path) if drop_path else nn.Identity()
self.act3 = create_act_layer(act_layer)
def zero_init_last(self):
nn.init.zeros_(self.conv3.bn.weight)
def forward(self, x):
shortcut = x
x = self.conv1(x)
x = self.conv2(x)
x = self.attn2(x)
x = self.conv3(x)
x = self.attn3(x)
x = self.drop_path(x) + shortcut
# FIXME partial shortcut needed if first block handled as per original, not used for my current impl
#x[:, :shortcut.size(1)] += shortcut
x = self.act3(x)
return x
class DarkBlock(nn.Module):
""" DarkNet Block
"""
def __init__(
self,
in_chs,
out_chs,
dilation=1,
bottle_ratio=0.5,
groups=1,
act_layer=nn.ReLU,
norm_layer=nn.BatchNorm2d,
attn_layer=None,
drop_block=None,
drop_path=0.
):
super(DarkBlock, self).__init__()
mid_chs = int(round(out_chs * bottle_ratio))
ckwargs = dict(act_layer=act_layer, norm_layer=norm_layer)
self.conv1 = ConvNormAct(in_chs, mid_chs, kernel_size=1, **ckwargs)
self.attn = attn_layer(mid_chs, act_layer=act_layer) if attn_layer is not None else nn.Identity()
self.conv2 = ConvNormAct(
mid_chs, out_chs, kernel_size=3, dilation=dilation, groups=groups,
drop_layer=drop_block, **ckwargs)
self.drop_path = DropPath(drop_path) if drop_path else nn.Identity()
def zero_init_last(self):
nn.init.zeros_(self.conv2.bn.weight)
def forward(self, x):
shortcut = x
x = self.conv1(x)
x = self.attn(x)
x = self.conv2(x)
x = self.drop_path(x) + shortcut
return x
class EdgeBlock(nn.Module):
""" EdgeResidual / Fused-MBConv / MobileNetV1-like 3x3 + 1x1 block (w/ activated output)
"""
def __init__(
self,
in_chs,
out_chs,
dilation=1,
bottle_ratio=0.5,
groups=1,
act_layer=nn.ReLU,
norm_layer=nn.BatchNorm2d,
attn_layer=None,
drop_block=None,
drop_path=0.
):
super(EdgeBlock, self).__init__()
mid_chs = int(round(out_chs * bottle_ratio))
ckwargs = dict(act_layer=act_layer, norm_layer=norm_layer)
self.conv1 = ConvNormAct(
in_chs, mid_chs, kernel_size=3, dilation=dilation, groups=groups,
drop_layer=drop_block, **ckwargs)
self.attn = attn_layer(mid_chs, act_layer=act_layer) if attn_layer is not None else nn.Identity()
self.conv2 = ConvNormAct(mid_chs, out_chs, kernel_size=1, **ckwargs)
self.drop_path = DropPath(drop_path) if drop_path else nn.Identity()
def zero_init_last(self):
nn.init.zeros_(self.conv2.bn.weight)
def forward(self, x):
shortcut = x
x = self.conv1(x)
x = self.attn(x)
x = self.conv2(x)
x = self.drop_path(x) + shortcut
return x
class CrossStage(nn.Module):
"""Cross Stage."""
def __init__(
self,
in_chs,
out_chs,
stride,
dilation,
depth,
block_ratio=1.,
bottle_ratio=1.,
expand_ratio=1.,
groups=1,
first_dilation=None,
avg_down=False,
down_growth=False,
cross_linear=False,
block_dpr=None,
block_fn=BottleneckBlock,
**block_kwargs,
):
super(CrossStage, self).__init__()
first_dilation = first_dilation or dilation
down_chs = out_chs if down_growth else in_chs # grow downsample channels to output channels
self.expand_chs = exp_chs = int(round(out_chs * expand_ratio))
block_out_chs = int(round(out_chs * block_ratio))
conv_kwargs = dict(act_layer=block_kwargs.get('act_layer'), norm_layer=block_kwargs.get('norm_layer'))
aa_layer = block_kwargs.pop('aa_layer', None)
if stride != 1 or first_dilation != dilation:
if avg_down:
self.conv_down = nn.Sequential(
nn.AvgPool2d(2) if stride == 2 else nn.Identity(), # FIXME dilation handling
ConvNormActAa(in_chs, out_chs, kernel_size=1, stride=1, groups=groups, **conv_kwargs)
)
else:
self.conv_down = ConvNormActAa(
in_chs, down_chs, kernel_size=3, stride=stride, dilation=first_dilation, groups=groups,
aa_layer=aa_layer, **conv_kwargs)
prev_chs = down_chs
else:
self.conv_down = nn.Identity()
prev_chs = in_chs
# FIXME this 1x1 expansion is pushed down into the cross and block paths in the darknet cfgs. Also,
# there is also special case for the first stage for some of the model that results in uneven split
# across the two paths. I did it this way for simplicity for now.
self.conv_exp = ConvNormAct(prev_chs, exp_chs, kernel_size=1, apply_act=not cross_linear, **conv_kwargs)
prev_chs = exp_chs // 2 # output of conv_exp is always split in two
self.blocks = nn.Sequential()
for i in range(depth):
self.blocks.add_module(str(i), block_fn(
in_chs=prev_chs,
out_chs=block_out_chs,
dilation=dilation,
bottle_ratio=bottle_ratio,
groups=groups,
drop_path=block_dpr[i] if block_dpr is not None else 0.,
**block_kwargs,
))
prev_chs = block_out_chs
# transition convs
self.conv_transition_b = ConvNormAct(prev_chs, exp_chs // 2, kernel_size=1, **conv_kwargs)
self.conv_transition = ConvNormAct(exp_chs, out_chs, kernel_size=1, **conv_kwargs)
def forward(self, x):
x = self.conv_down(x)
x = self.conv_exp(x)
xs, xb = x.split(self.expand_chs // 2, dim=1)
xb = self.blocks(xb)
xb = self.conv_transition_b(xb).contiguous()
out = self.conv_transition(torch.cat([xs, xb], dim=1))
return out
class CrossStage3(nn.Module):
"""Cross Stage 3.
Similar to CrossStage, but with only one transition conv for the output.
"""
def __init__(
self,
in_chs,
out_chs,
stride,
dilation,
depth,
block_ratio=1.,
bottle_ratio=1.,
expand_ratio=1.,
groups=1,
first_dilation=None,
avg_down=False,
down_growth=False,
cross_linear=False,
block_dpr=None,
block_fn=BottleneckBlock,
**block_kwargs,
):
super(CrossStage3, self).__init__()
first_dilation = first_dilation or dilation
down_chs = out_chs if down_growth else in_chs # grow downsample channels to output channels
self.expand_chs = exp_chs = int(round(out_chs * expand_ratio))
block_out_chs = int(round(out_chs * block_ratio))
conv_kwargs = dict(act_layer=block_kwargs.get('act_layer'), norm_layer=block_kwargs.get('norm_layer'))
aa_layer = block_kwargs.pop('aa_layer', None)
if stride != 1 or first_dilation != dilation:
if avg_down:
self.conv_down = nn.Sequential(
nn.AvgPool2d(2) if stride == 2 else nn.Identity(), # FIXME dilation handling
ConvNormActAa(in_chs, out_chs, kernel_size=1, stride=1, groups=groups, **conv_kwargs)
)
else:
self.conv_down = ConvNormActAa(
in_chs, down_chs, kernel_size=3, stride=stride, dilation=first_dilation, groups=groups,
aa_layer=aa_layer, **conv_kwargs)
prev_chs = down_chs
else:
self.conv_down = None
prev_chs = in_chs
# expansion conv
self.conv_exp = ConvNormAct(prev_chs, exp_chs, kernel_size=1, apply_act=not cross_linear, **conv_kwargs)
prev_chs = exp_chs // 2 # expanded output is split in 2 for blocks and cross stage
self.blocks = nn.Sequential()
for i in range(depth):
self.blocks.add_module(str(i), block_fn(
in_chs=prev_chs,
out_chs=block_out_chs,
dilation=dilation,
bottle_ratio=bottle_ratio,
groups=groups,
drop_path=block_dpr[i] if block_dpr is not None else 0.,
**block_kwargs,
))
prev_chs = block_out_chs
# transition convs
self.conv_transition = ConvNormAct(exp_chs, out_chs, kernel_size=1, **conv_kwargs)
def forward(self, x):
x = self.conv_down(x)
x = self.conv_exp(x)
x1, x2 = x.split(self.expand_chs // 2, dim=1)
x1 = self.blocks(x1)
out = self.conv_transition(torch.cat([x1, x2], dim=1))
return out
class DarkStage(nn.Module):
"""DarkNet stage."""
def __init__(
self,
in_chs,
out_chs,
stride,
dilation,
depth,
block_ratio=1.,
bottle_ratio=1.,
groups=1,
first_dilation=None,
avg_down=False,
block_fn=BottleneckBlock,
block_dpr=None,
**block_kwargs,
):
super(DarkStage, self).__init__()
first_dilation = first_dilation or dilation
conv_kwargs = dict(act_layer=block_kwargs.get('act_layer'), norm_layer=block_kwargs.get('norm_layer'))
aa_layer = block_kwargs.pop('aa_layer', None)
if avg_down:
self.conv_down = nn.Sequential(
nn.AvgPool2d(2) if stride == 2 else nn.Identity(), # FIXME dilation handling
ConvNormActAa(in_chs, out_chs, kernel_size=1, stride=1, groups=groups, **conv_kwargs)
)
else:
self.conv_down = ConvNormActAa(
in_chs, out_chs, kernel_size=3, stride=stride, dilation=first_dilation, groups=groups,
aa_layer=aa_layer, **conv_kwargs)
prev_chs = out_chs
block_out_chs = int(round(out_chs * block_ratio))
self.blocks = nn.Sequential()
for i in range(depth):
self.blocks.add_module(str(i), block_fn(
in_chs=prev_chs,
out_chs=block_out_chs,
dilation=dilation,
bottle_ratio=bottle_ratio,
groups=groups,
drop_path=block_dpr[i] if block_dpr is not None else 0.,
**block_kwargs
))
prev_chs = block_out_chs
def forward(self, x):
x = self.conv_down(x)
x = self.blocks(x)
return x
def create_csp_stem(
in_chans=3,
out_chs=32,
kernel_size=3,
stride=2,
pool='',
padding='',
act_layer=nn.ReLU,
norm_layer=nn.BatchNorm2d,
aa_layer=None,
):
stem = nn.Sequential()
feature_info = []
if not isinstance(out_chs, (tuple, list)):
out_chs = [out_chs]
stem_depth = len(out_chs)
assert stem_depth
assert stride in (1, 2, 4)
prev_feat = None
prev_chs = in_chans
last_idx = stem_depth - 1
stem_stride = 1
for i, chs in enumerate(out_chs):
conv_name = f'conv{i + 1}'
conv_stride = 2 if (i == 0 and stride > 1) or (i == last_idx and stride > 2 and not pool) else 1
if conv_stride > 1 and prev_feat is not None:
feature_info.append(prev_feat)
stem.add_module(conv_name, ConvNormAct(
prev_chs, chs, kernel_size,
stride=conv_stride,
padding=padding if i == 0 else '',
act_layer=act_layer,
norm_layer=norm_layer,
))
stem_stride *= conv_stride
prev_chs = chs
prev_feat = dict(num_chs=prev_chs, reduction=stem_stride, module='.'.join(['stem', conv_name]))
if pool:
assert stride > 2
if prev_feat is not None:
feature_info.append(prev_feat)
if aa_layer is not None:
stem.add_module('pool', nn.MaxPool2d(kernel_size=3, stride=1, padding=1))
stem.add_module('aa', aa_layer(channels=prev_chs, stride=2))
pool_name = 'aa'
else:
stem.add_module('pool', nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
pool_name = 'pool'
stem_stride *= 2
prev_feat = dict(num_chs=prev_chs, reduction=stem_stride, module='.'.join(['stem', pool_name]))
feature_info.append(prev_feat)
return stem, feature_info
def _get_stage_fn(stage_args):
stage_type = stage_args.pop('stage_type')
assert stage_type in ('dark', 'csp', 'cs3')
if stage_type == 'dark':
stage_args.pop('expand_ratio', None)
stage_args.pop('cross_linear', None)
stage_args.pop('down_growth', None)
stage_fn = DarkStage
elif stage_type == 'csp':
stage_fn = CrossStage
else:
stage_fn = CrossStage3
return stage_fn, stage_args
def _get_block_fn(stage_args):
block_type = stage_args.pop('block_type')
assert block_type in ('dark', 'edge', 'bottle')
if block_type == 'dark':
return DarkBlock, stage_args
elif block_type == 'edge':
return EdgeBlock, stage_args
else:
return BottleneckBlock, stage_args
def _get_attn_fn(stage_args):
attn_layer = stage_args.pop('attn_layer')
attn_kwargs = stage_args.pop('attn_kwargs', None) or {}
if attn_layer is not None:
attn_layer = get_attn(attn_layer)
if attn_kwargs:
attn_layer = partial(attn_layer, **attn_kwargs)
return attn_layer, stage_args
def create_csp_stages(
cfg: CspModelCfg,
drop_path_rate: float,
output_stride: int,
stem_feat: Dict[str, Any],
):
cfg_dict = asdict(cfg.stages)
num_stages = len(cfg.stages.depth)
cfg_dict['block_dpr'] = [None] * num_stages if not drop_path_rate else \
[x.tolist() for x in torch.linspace(0, drop_path_rate, sum(cfg.stages.depth)).split(cfg.stages.depth)]
stage_args = [dict(zip(cfg_dict.keys(), values)) for values in zip(*cfg_dict.values())]
block_kwargs = dict(
act_layer=cfg.act_layer,
norm_layer=cfg.norm_layer,
)
dilation = 1
net_stride = stem_feat['reduction']
prev_chs = stem_feat['num_chs']
prev_feat = stem_feat
feature_info = []
stages = []
for stage_idx, stage_args in enumerate(stage_args):
stage_fn, stage_args = _get_stage_fn(stage_args)
block_fn, stage_args = _get_block_fn(stage_args)
attn_fn, stage_args = _get_attn_fn(stage_args)
stride = stage_args.pop('stride')
if stride != 1 and prev_feat:
feature_info.append(prev_feat)
if net_stride >= output_stride and stride > 1:
dilation *= stride
stride = 1
net_stride *= stride
first_dilation = 1 if dilation in (1, 2) else 2
stages += [stage_fn(
prev_chs,
**stage_args,
stride=stride,
first_dilation=first_dilation,
dilation=dilation,
block_fn=block_fn,
aa_layer=cfg.aa_layer,
attn_layer=attn_fn, # will be passed through stage as block_kwargs
**block_kwargs,
)]
prev_chs = stage_args['out_chs']
prev_feat = dict(num_chs=prev_chs, reduction=net_stride, module=f'stages.{stage_idx}')
feature_info.append(prev_feat)
return nn.Sequential(*stages), feature_info
class CspNet(nn.Module):
"""Cross Stage Partial base model.
Paper: `CSPNet: A New Backbone that can Enhance Learning Capability of CNN` - https://arxiv.org/abs/1911.11929
Ref Impl: https://github.com/WongKinYiu/CrossStagePartialNetworks
NOTE: There are differences in the way I handle the 1x1 'expansion' conv in this impl vs the
darknet impl. I did it this way for simplicity and less special cases.
"""
def __init__(
self,
cfg: CspModelCfg,
in_chans=3,
num_classes=1000,
output_stride=32,
global_pool='avg',
drop_rate=0.,
drop_path_rate=0.,
zero_init_last=True,
**kwargs,
):
"""
Args:
cfg (CspModelCfg): Model architecture configuration
in_chans (int): Number of input channels (default: 3)
num_classes (int): Number of classifier classes (default: 1000)
output_stride (int): Output stride of network, one of (8, 16, 32) (default: 32)
global_pool (str): Global pooling type (default: 'avg')
drop_rate (float): Dropout rate (default: 0.)
drop_path_rate (float): Stochastic depth drop-path rate (default: 0.)
zero_init_last (bool): Zero-init last weight of residual path
kwargs (dict): Extra kwargs overlayed onto cfg
"""
super().__init__()
self.num_classes = num_classes
self.drop_rate = drop_rate
assert output_stride in (8, 16, 32)
cfg = replace(cfg, **kwargs) # overlay kwargs onto cfg
layer_args = dict(
act_layer=cfg.act_layer,
norm_layer=cfg.norm_layer,
aa_layer=cfg.aa_layer
)
self.feature_info = []
# Construct the stem
self.stem, stem_feat_info = create_csp_stem(in_chans, **asdict(cfg.stem), **layer_args)
self.feature_info.extend(stem_feat_info[:-1])
# Construct the stages
self.stages, stage_feat_info = create_csp_stages(
cfg,
drop_path_rate=drop_path_rate,
output_stride=output_stride,
stem_feat=stem_feat_info[-1],
)
prev_chs = stage_feat_info[-1]['num_chs']
self.feature_info.extend(stage_feat_info)
# Construct the head
self.num_features = prev_chs
self.head = ClassifierHead(
in_features=prev_chs, num_classes=num_classes, pool_type=global_pool, drop_rate=drop_rate)
named_apply(partial(_init_weights, zero_init_last=zero_init_last), self)
@torch.jit.ignore
def group_matcher(self, coarse=False):
matcher = dict(
stem=r'^stem',
blocks=r'^stages\.(\d+)' if coarse else [
(r'^stages\.(\d+)\.blocks\.(\d+)', None),
(r'^stages\.(\d+)\..*transition', MATCH_PREV_GROUP), # map to last block in stage
(r'^stages\.(\d+)', (0,)),
]
)
return matcher
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
assert not enable, 'gradient checkpointing not supported'
@torch.jit.ignore
def get_classifier(self):
return self.head.fc
def reset_classifier(self, num_classes, global_pool='avg'):
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate)
def forward_features(self, x):
x = self.stem(x)
x = self.stages(x)
return x
def forward_head(self, x, pre_logits: bool = False):
return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x)
def forward(self, x):
x = self.forward_features(x)
x = self.forward_head(x)
return x
def _init_weights(module, name, zero_init_last=False):
if isinstance(module, nn.Conv2d):
nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu')
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Linear):
nn.init.normal_(module.weight, mean=0.0, std=0.01)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif zero_init_last and hasattr(module, 'zero_init_last'):
module.zero_init_last()
model_cfgs = dict(
cspresnet50=CspModelCfg(
stem=CspStemCfg(out_chs=64, kernel_size=7, stride=4, pool='max'),
stages=CspStagesCfg(
depth=(3, 3, 5, 2),
out_chs=(128, 256, 512, 1024),
stride=(1, 2),
expand_ratio=2.,
bottle_ratio=0.5,
cross_linear=True,
),
),
cspresnet50d=CspModelCfg(
stem=CspStemCfg(out_chs=(32, 32, 64), kernel_size=3, stride=4, pool='max'),
stages=CspStagesCfg(
depth=(3, 3, 5, 2),
out_chs=(128, 256, 512, 1024),
stride=(1,) + (2,),
expand_ratio=2.,
bottle_ratio=0.5,
block_ratio=1.,
cross_linear=True,
),
),
cspresnet50w=CspModelCfg(
stem=CspStemCfg(out_chs=(32, 32, 64), kernel_size=3, stride=4, pool='max'),
stages=CspStagesCfg(
depth=(3, 3, 5, 2),
out_chs=(256, 512, 1024, 2048),
stride=(1,) + (2,),
expand_ratio=1.,
bottle_ratio=0.25,
block_ratio=0.5,
cross_linear=True,
),
),
cspresnext50=CspModelCfg(
stem=CspStemCfg(out_chs=64, kernel_size=7, stride=4, pool='max'),
stages=CspStagesCfg(
depth=(3, 3, 5, 2),
out_chs=(256, 512, 1024, 2048),
stride=(1,) + (2,),
groups=32,
expand_ratio=1.,
bottle_ratio=1.,
block_ratio=0.5,
cross_linear=True,
),
),
cspdarknet53=CspModelCfg(
stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''),
stages=CspStagesCfg(
depth=(1, 2, 8, 8, 4),
out_chs=(64, 128, 256, 512, 1024),
stride=2,
expand_ratio=(2.,) + (1.,),
bottle_ratio=(0.5,) + (1.,),
block_ratio=(1.,) + (0.5,),
down_growth=True,
block_type='dark',
),
),
darknet17=CspModelCfg(
stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''),
stages=CspStagesCfg(
depth=(1,) * 5,
out_chs=(64, 128, 256, 512, 1024),
stride=(2,),
bottle_ratio=(0.5,),
block_ratio=(1.,),
stage_type='dark',
block_type='dark',
),
),
darknet21=CspModelCfg(
stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''),
stages=CspStagesCfg(
depth=(1, 1, 1, 2, 2),
out_chs=(64, 128, 256, 512, 1024),
stride=(2,),
bottle_ratio=(0.5,),
block_ratio=(1.,),
stage_type='dark',
block_type='dark',
),
),
sedarknet21=CspModelCfg(
stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''),
stages=CspStagesCfg(
depth=(1, 1, 1, 2, 2),
out_chs=(64, 128, 256, 512, 1024),
stride=2,
bottle_ratio=0.5,
block_ratio=1.,
attn_layer='se',
stage_type='dark',
block_type='dark',
),
),
darknet53=CspModelCfg(
stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''),
stages=CspStagesCfg(
depth=(1, 2, 8, 8, 4),
out_chs=(64, 128, 256, 512, 1024),
stride=2,
bottle_ratio=0.5,
block_ratio=1.,
stage_type='dark',
block_type='dark',
),
),
darknetaa53=CspModelCfg(
stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''),
stages=CspStagesCfg(
depth=(1, 2, 8, 8, 4),
out_chs=(64, 128, 256, 512, 1024),
stride=2,
bottle_ratio=0.5,
block_ratio=1.,
avg_down=True,
stage_type='dark',
block_type='dark',
),
),
cs3darknet_s=_cs3_cfg(width_multiplier=0.5, depth_multiplier=0.5),
cs3darknet_m=_cs3_cfg(width_multiplier=0.75, depth_multiplier=0.67),
cs3darknet_l=_cs3_cfg(),
cs3darknet_x=_cs3_cfg(width_multiplier=1.25, depth_multiplier=1.33),
cs3darknet_focus_s=_cs3_cfg(width_multiplier=0.5, depth_multiplier=0.5, focus=True),
cs3darknet_focus_m=_cs3_cfg(width_multiplier=0.75, depth_multiplier=0.67, focus=True),
cs3darknet_focus_l=_cs3_cfg(focus=True),
cs3darknet_focus_x=_cs3_cfg(width_multiplier=1.25, depth_multiplier=1.33, focus=True),
cs3sedarknet_l=_cs3_cfg(attn_layer='se', attn_kwargs=dict(rd_ratio=.25)),
cs3sedarknet_x=_cs3_cfg(attn_layer='se', width_multiplier=1.25, depth_multiplier=1.33),
cs3sedarknet_xdw=CspModelCfg(
stem=CspStemCfg(out_chs=(32, 64), kernel_size=3, stride=2, pool=''),
stages=CspStagesCfg(
depth=(3, 6, 12, 4),
out_chs=(256, 512, 1024, 2048),
stride=2,
groups=(1, 1, 256, 512),
bottle_ratio=0.5,
block_ratio=0.5,
attn_layer='se',
),
act_layer='silu',
),
cs3edgenet_x=_cs3_cfg(width_multiplier=1.25, depth_multiplier=1.33, bottle_ratio=1.5, block_type='edge'),
cs3se_edgenet_x=_cs3_cfg(
width_multiplier=1.25, depth_multiplier=1.33, bottle_ratio=1.5, block_type='edge',
attn_layer='se', attn_kwargs=dict(rd_ratio=.25)),
)
def _create_cspnet(variant, pretrained=False, **kwargs):
if variant.startswith('darknet') or variant.startswith('cspdarknet'):
# NOTE: DarkNet is one of few models with stride==1 features w/ 6 out_indices [0..5]
default_out_indices = (0, 1, 2, 3, 4, 5)
else:
default_out_indices = (0, 1, 2, 3, 4)
out_indices = kwargs.pop('out_indices', default_out_indices)
return build_model_with_cfg(
CspNet, variant, pretrained,
model_cfg=model_cfgs[variant],
feature_cfg=dict(flatten_sequential=True, out_indices=out_indices),
**kwargs)
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 256, 256), 'pool_size': (8, 8),
'crop_pct': 0.887, 'interpolation': 'bilinear',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'stem.conv1.conv', 'classifier': 'head.fc',
**kwargs
}
default_cfgs = generate_default_cfgs({
'cspresnet50.ra_in1k': _cfg(
hf_hub_id='timm/',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspresnet50_ra-d3e8d487.pth'),
'cspresnet50d.untrained': _cfg(),
'cspresnet50w.untrained': _cfg(),
'cspresnext50.ra_in1k': _cfg(
hf_hub_id='timm/',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspresnext50_ra_224-648b4713.pth',
),
'cspdarknet53.ra_in1k': _cfg(
hf_hub_id='timm/',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspdarknet53_ra_256-d05c7c21.pth'),
'darknet17.untrained': _cfg(),
'darknet21.untrained': _cfg(),
'sedarknet21.untrained': _cfg(),
'darknet53.c2ns_in1k': _cfg(
hf_hub_id='timm/',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/darknet53_256_c2ns-3aeff817.pth',
interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=1.0),
'darknetaa53.c2ns_in1k': _cfg(
hf_hub_id='timm/',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/darknetaa53_c2ns-5c28ec8a.pth',
test_input_size=(3, 288, 288), test_crop_pct=1.0),
'cs3darknet_s.untrained': _cfg(interpolation='bicubic'),
'cs3darknet_m.c2ns_in1k': _cfg(
hf_hub_id='timm/',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3darknet_m_c2ns-43f06604.pth',
interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=0.95,
),
'cs3darknet_l.c2ns_in1k': _cfg(
hf_hub_id='timm/',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3darknet_l_c2ns-16220c5d.pth',
interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=0.95),
'cs3darknet_x.c2ns_in1k': _cfg(
hf_hub_id='timm/',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3darknet_x_c2ns-4e4490aa.pth',
interpolation='bicubic', crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0),
'cs3darknet_focus_s.untrained': _cfg(interpolation='bicubic'),
'cs3darknet_focus_m.c2ns_in1k': _cfg(
hf_hub_id='timm/',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3darknet_focus_m_c2ns-e23bed41.pth',
interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=0.95),
'cs3darknet_focus_l.c2ns_in1k': _cfg(
hf_hub_id='timm/',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3darknet_focus_l_c2ns-65ef8888.pth',
interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=0.95),
'cs3darknet_focus_x.untrained': _cfg(interpolation='bicubic'),
'cs3sedarknet_l.c2ns_in1k': _cfg(
hf_hub_id='timm/',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3sedarknet_l_c2ns-e8d1dc13.pth',
interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=0.95),
'cs3sedarknet_x.c2ns_in1k': _cfg(
hf_hub_id='timm/',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3sedarknet_x_c2ns-b4d0abc0.pth',
interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=1.0),
'cs3sedarknet_xdw.untrained': _cfg(interpolation='bicubic'),
'cs3edgenet_x.c2_in1k': _cfg(
hf_hub_id='timm/',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3edgenet_x_c2-2e1610a9.pth',
interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=1.0),
'cs3se_edgenet_x.c2ns_in1k': _cfg(
hf_hub_id='timm/',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3se_edgenet_x_c2ns-76f8e3ac.pth',
interpolation='bicubic', crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0),
})
@register_model
def cspresnet50(pretrained=False, **kwargs) -> CspNet:
return _create_cspnet('cspresnet50', pretrained=pretrained, **kwargs)
@register_model
def cspresnet50d(pretrained=False, **kwargs) -> CspNet:
return _create_cspnet('cspresnet50d', pretrained=pretrained, **kwargs)
@register_model
def cspresnet50w(pretrained=False, **kwargs) -> CspNet:
return _create_cspnet('cspresnet50w', pretrained=pretrained, **kwargs)
@register_model
def cspresnext50(pretrained=False, **kwargs) -> CspNet:
return _create_cspnet('cspresnext50', pretrained=pretrained, **kwargs)
@register_model
def cspdarknet53(pretrained=False, **kwargs) -> CspNet:
return _create_cspnet('cspdarknet53', pretrained=pretrained, **kwargs)
@register_model
def darknet17(pretrained=False, **kwargs) -> CspNet:
return _create_cspnet('darknet17', pretrained=pretrained, **kwargs)
@register_model
def darknet21(pretrained=False, **kwargs) -> CspNet:
return _create_cspnet('darknet21', pretrained=pretrained, **kwargs)
@register_model
def sedarknet21(pretrained=False, **kwargs) -> CspNet:
return _create_cspnet('sedarknet21', pretrained=pretrained, **kwargs)
@register_model
def darknet53(pretrained=False, **kwargs) -> CspNet:
return _create_cspnet('darknet53', pretrained=pretrained, **kwargs)
@register_model
def darknetaa53(pretrained=False, **kwargs) -> CspNet:
return _create_cspnet('darknetaa53', pretrained=pretrained, **kwargs)
@register_model
def cs3darknet_s(pretrained=False, **kwargs) -> CspNet:
return _create_cspnet('cs3darknet_s', pretrained=pretrained, **kwargs)
@register_model
def cs3darknet_m(pretrained=False, **kwargs) -> CspNet:
return _create_cspnet('cs3darknet_m', pretrained=pretrained, **kwargs)
@register_model
def cs3darknet_l(pretrained=False, **kwargs) -> CspNet:
return _create_cspnet('cs3darknet_l', pretrained=pretrained, **kwargs)
@register_model
def cs3darknet_x(pretrained=False, **kwargs) -> CspNet:
return _create_cspnet('cs3darknet_x', pretrained=pretrained, **kwargs)
@register_model
def cs3darknet_focus_s(pretrained=False, **kwargs) -> CspNet:
return _create_cspnet('cs3darknet_focus_s', pretrained=pretrained, **kwargs)
@register_model
def cs3darknet_focus_m(pretrained=False, **kwargs) -> CspNet:
return _create_cspnet('cs3darknet_focus_m', pretrained=pretrained, **kwargs)
@register_model
def cs3darknet_focus_l(pretrained=False, **kwargs) -> CspNet:
return _create_cspnet('cs3darknet_focus_l', pretrained=pretrained, **kwargs)
@register_model
def cs3darknet_focus_x(pretrained=False, **kwargs) -> CspNet:
return _create_cspnet('cs3darknet_focus_x', pretrained=pretrained, **kwargs)
@register_model
def cs3sedarknet_l(pretrained=False, **kwargs) -> CspNet:
return _create_cspnet('cs3sedarknet_l', pretrained=pretrained, **kwargs)
@register_model
def cs3sedarknet_x(pretrained=False, **kwargs) -> CspNet:
return _create_cspnet('cs3sedarknet_x', pretrained=pretrained, **kwargs)
@register_model
def cs3sedarknet_xdw(pretrained=False, **kwargs) -> CspNet:
return _create_cspnet('cs3sedarknet_xdw', pretrained=pretrained, **kwargs)
@register_model
def cs3edgenet_x(pretrained=False, **kwargs) -> CspNet:
return _create_cspnet('cs3edgenet_x', pretrained=pretrained, **kwargs)
@register_model
def cs3se_edgenet_x(pretrained=False, **kwargs) -> CspNet:
return _create_cspnet('cs3se_edgenet_x', pretrained=pretrained, **kwargs) |