File size: 24,271 Bytes
786f6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
""" CrossViT Model

@inproceedings{
    chen2021crossvit,
    title={{CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification}},
    author={Chun-Fu (Richard) Chen and Quanfu Fan and Rameswar Panda},
    booktitle={International Conference on Computer Vision (ICCV)},
    year={2021}
}

Paper link: https://arxiv.org/abs/2103.14899
Original code: https://github.com/IBM/CrossViT/blob/main/models/crossvit.py

NOTE: model names have been renamed from originals to represent actual input res all *_224 -> *_240 and *_384 -> *_408

Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman
"""

# Copyright IBM All Rights Reserved.
# SPDX-License-Identifier: Apache-2.0


"""
Modifed from Timm. https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py

"""
from functools import partial
from typing import List
from typing import Tuple

import torch
import torch.hub
import torch.nn as nn

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import DropPath, to_2tuple, trunc_normal_, _assert
from ._builder import build_model_with_cfg
from ._features_fx import register_notrace_function
from ._registry import register_model, generate_default_cfgs
from .vision_transformer import Block

__all__ = ['CrossVit']  # model_registry will add each entrypoint fn to this


class PatchEmbed(nn.Module):
    """ Image to Patch Embedding
    """

    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, multi_conv=False):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
        self.img_size = img_size
        self.patch_size = patch_size
        self.num_patches = num_patches
        if multi_conv:
            if patch_size[0] == 12:
                self.proj = nn.Sequential(
                    nn.Conv2d(in_chans, embed_dim // 4, kernel_size=7, stride=4, padding=3),
                    nn.ReLU(inplace=True),
                    nn.Conv2d(embed_dim // 4, embed_dim // 2, kernel_size=3, stride=3, padding=0),
                    nn.ReLU(inplace=True),
                    nn.Conv2d(embed_dim // 2, embed_dim, kernel_size=3, stride=1, padding=1),
                )
            elif patch_size[0] == 16:
                self.proj = nn.Sequential(
                    nn.Conv2d(in_chans, embed_dim // 4, kernel_size=7, stride=4, padding=3),
                    nn.ReLU(inplace=True),
                    nn.Conv2d(embed_dim // 4, embed_dim // 2, kernel_size=3, stride=2, padding=1),
                    nn.ReLU(inplace=True),
                    nn.Conv2d(embed_dim // 2, embed_dim, kernel_size=3, stride=2, padding=1),
                )
        else:
            self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)

    def forward(self, x):
        B, C, H, W = x.shape
        # FIXME look at relaxing size constraints
        _assert(H == self.img_size[0],
                f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]}).")
        _assert(W == self.img_size[1],
                f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]}).")
        x = self.proj(x).flatten(2).transpose(1, 2)
        return x


class CrossAttention(nn.Module):
    def __init__(
            self,
            dim,
            num_heads=8,
            qkv_bias=False,
            attn_drop=0.,
            proj_drop=0.,
    ):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
        self.scale = head_dim ** -0.5

        self.wq = nn.Linear(dim, dim, bias=qkv_bias)
        self.wk = nn.Linear(dim, dim, bias=qkv_bias)
        self.wv = nn.Linear(dim, dim, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, N, C = x.shape
        # B1C -> B1H(C/H) -> BH1(C/H)
        q = self.wq(x[:, 0:1, ...]).reshape(B, 1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
        # BNC -> BNH(C/H) -> BHN(C/H)
        k = self.wk(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
        # BNC -> BNH(C/H) -> BHN(C/H)
        v = self.wv(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)

        attn = (q @ k.transpose(-2, -1)) * self.scale  # BH1(C/H) @ BH(C/H)N -> BH1N
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, 1, C)  # (BH1N @ BHN(C/H)) -> BH1(C/H) -> B1H(C/H) -> B1C
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class CrossAttentionBlock(nn.Module):

    def __init__(
            self,
            dim,
            num_heads,
            mlp_ratio=4.,
            qkv_bias=False,
            proj_drop=0.,
            attn_drop=0.,
            drop_path=0.,
            act_layer=nn.GELU,
            norm_layer=nn.LayerNorm,
    ):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = CrossAttention(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            attn_drop=attn_drop,
            proj_drop=proj_drop,
        )
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

    def forward(self, x):
        x = x[:, 0:1, ...] + self.drop_path(self.attn(self.norm1(x)))
        return x


class MultiScaleBlock(nn.Module):

    def __init__(
            self,
            dim,
            patches,
            depth,
            num_heads,
            mlp_ratio,
            qkv_bias=False,
            proj_drop=0.,
            attn_drop=0.,
            drop_path=0.,
            act_layer=nn.GELU,
            norm_layer=nn.LayerNorm,
    ):
        super().__init__()

        num_branches = len(dim)
        self.num_branches = num_branches
        # different branch could have different embedding size, the first one is the base
        self.blocks = nn.ModuleList()
        for d in range(num_branches):
            tmp = []
            for i in range(depth[d]):
                tmp.append(Block(
                    dim=dim[d],
                    num_heads=num_heads[d],
                    mlp_ratio=mlp_ratio[d],
                    qkv_bias=qkv_bias,
                    proj_drop=proj_drop,
                    attn_drop=attn_drop,
                    drop_path=drop_path[i],
                    norm_layer=norm_layer,
                ))
            if len(tmp) != 0:
                self.blocks.append(nn.Sequential(*tmp))

        if len(self.blocks) == 0:
            self.blocks = None

        self.projs = nn.ModuleList()
        for d in range(num_branches):
            if dim[d] == dim[(d + 1) % num_branches] and False:
                tmp = [nn.Identity()]
            else:
                tmp = [norm_layer(dim[d]), act_layer(), nn.Linear(dim[d], dim[(d + 1) % num_branches])]
            self.projs.append(nn.Sequential(*tmp))

        self.fusion = nn.ModuleList()
        for d in range(num_branches):
            d_ = (d + 1) % num_branches
            nh = num_heads[d_]
            if depth[-1] == 0:  # backward capability:
                self.fusion.append(
                    CrossAttentionBlock(
                        dim=dim[d_],
                        num_heads=nh,
                        mlp_ratio=mlp_ratio[d],
                        qkv_bias=qkv_bias,
                        proj_drop=proj_drop,
                        attn_drop=attn_drop,
                        drop_path=drop_path[-1],
                        norm_layer=norm_layer,
                    ))
            else:
                tmp = []
                for _ in range(depth[-1]):
                    tmp.append(CrossAttentionBlock(
                        dim=dim[d_],
                        num_heads=nh,
                        mlp_ratio=mlp_ratio[d],
                        qkv_bias=qkv_bias,
                        proj_drop=proj_drop,
                        attn_drop=attn_drop,
                        drop_path=drop_path[-1],
                        norm_layer=norm_layer,
                    ))
                self.fusion.append(nn.Sequential(*tmp))

        self.revert_projs = nn.ModuleList()
        for d in range(num_branches):
            if dim[(d + 1) % num_branches] == dim[d] and False:
                tmp = [nn.Identity()]
            else:
                tmp = [norm_layer(dim[(d + 1) % num_branches]), act_layer(),
                       nn.Linear(dim[(d + 1) % num_branches], dim[d])]
            self.revert_projs.append(nn.Sequential(*tmp))

    def forward(self, x: List[torch.Tensor]) -> List[torch.Tensor]:

        outs_b = []
        for i, block in enumerate(self.blocks):
            outs_b.append(block(x[i]))

        # only take the cls token out
        proj_cls_token = torch.jit.annotate(List[torch.Tensor], [])
        for i, proj in enumerate(self.projs):
            proj_cls_token.append(proj(outs_b[i][:, 0:1, ...]))

        # cross attention
        outs = []
        for i, (fusion, revert_proj) in enumerate(zip(self.fusion, self.revert_projs)):
            tmp = torch.cat((proj_cls_token[i], outs_b[(i + 1) % self.num_branches][:, 1:, ...]), dim=1)
            tmp = fusion(tmp)
            reverted_proj_cls_token = revert_proj(tmp[:, 0:1, ...])
            tmp = torch.cat((reverted_proj_cls_token, outs_b[i][:, 1:, ...]), dim=1)
            outs.append(tmp)
        return outs


def _compute_num_patches(img_size, patches):
    return [i[0] // p * i[1] // p for i, p in zip(img_size, patches)]


@register_notrace_function
def scale_image(x, ss: Tuple[int, int], crop_scale: bool = False):  # annotations for torchscript
    """
    Pulled out of CrossViT.forward_features to bury conditional logic in a leaf node for FX tracing.
    Args:
        x (Tensor): input image
        ss (tuple[int, int]): height and width to scale to
        crop_scale (bool): whether to crop instead of interpolate to achieve the desired scale. Defaults to False
    Returns:
        Tensor: the "scaled" image batch tensor
    """
    H, W = x.shape[-2:]
    if H != ss[0] or W != ss[1]:
        if crop_scale and ss[0] <= H and ss[1] <= W:
            cu, cl = int(round((H - ss[0]) / 2.)), int(round((W - ss[1]) / 2.))
            x = x[:, :, cu:cu + ss[0], cl:cl + ss[1]]
        else:
            x = torch.nn.functional.interpolate(x, size=ss, mode='bicubic', align_corners=False)
    return x


class CrossVit(nn.Module):
    """ Vision Transformer with support for patch or hybrid CNN input stage
    """

    def __init__(
            self,
            img_size=224,
            img_scale=(1.0, 1.0),
            patch_size=(8, 16),
            in_chans=3,
            num_classes=1000,
            embed_dim=(192, 384),
            depth=((1, 3, 1), (1, 3, 1), (1, 3, 1)),
            num_heads=(6, 12),
            mlp_ratio=(2., 2., 4.),
            multi_conv=False,
            crop_scale=False,
            qkv_bias=True,
            drop_rate=0.,
            pos_drop_rate=0.,
            proj_drop_rate=0.,
            attn_drop_rate=0.,
            drop_path_rate=0.,
            norm_layer=partial(nn.LayerNorm, eps=1e-6),
            global_pool='token',
    ):
        super().__init__()
        assert global_pool in ('token', 'avg')

        self.num_classes = num_classes
        self.global_pool = global_pool
        self.img_size = to_2tuple(img_size)
        img_scale = to_2tuple(img_scale)
        self.img_size_scaled = [tuple([int(sj * si) for sj in self.img_size]) for si in img_scale]
        self.crop_scale = crop_scale  # crop instead of interpolate for scale
        num_patches = _compute_num_patches(self.img_size_scaled, patch_size)
        self.num_branches = len(patch_size)
        self.embed_dim = embed_dim
        self.num_features = sum(embed_dim)
        self.patch_embed = nn.ModuleList()

        # hard-coded for torch jit script
        for i in range(self.num_branches):
            setattr(self, f'pos_embed_{i}', nn.Parameter(torch.zeros(1, 1 + num_patches[i], embed_dim[i])))
            setattr(self, f'cls_token_{i}', nn.Parameter(torch.zeros(1, 1, embed_dim[i])))

        for im_s, p, d in zip(self.img_size_scaled, patch_size, embed_dim):
            self.patch_embed.append(
                PatchEmbed(
                    img_size=im_s,
                    patch_size=p,
                    in_chans=in_chans,
                    embed_dim=d,
                    multi_conv=multi_conv,
                ))

        self.pos_drop = nn.Dropout(p=pos_drop_rate)

        total_depth = sum([sum(x[-2:]) for x in depth])
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, total_depth)]  # stochastic depth decay rule
        dpr_ptr = 0
        self.blocks = nn.ModuleList()
        for idx, block_cfg in enumerate(depth):
            curr_depth = max(block_cfg[:-1]) + block_cfg[-1]
            dpr_ = dpr[dpr_ptr:dpr_ptr + curr_depth]
            blk = MultiScaleBlock(
                embed_dim,
                num_patches,
                block_cfg,
                num_heads=num_heads,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                proj_drop=proj_drop_rate,
                attn_drop=attn_drop_rate,
                drop_path=dpr_,
                norm_layer=norm_layer,
            )
            dpr_ptr += curr_depth
            self.blocks.append(blk)

        self.norm = nn.ModuleList([norm_layer(embed_dim[i]) for i in range(self.num_branches)])
        self.head_drop = nn.Dropout(drop_rate)
        self.head = nn.ModuleList([
            nn.Linear(embed_dim[i], num_classes) if num_classes > 0 else nn.Identity()
            for i in range(self.num_branches)])

        for i in range(self.num_branches):
            trunc_normal_(getattr(self, f'pos_embed_{i}'), std=.02)
            trunc_normal_(getattr(self, f'cls_token_{i}'), std=.02)

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        out = set()
        for i in range(self.num_branches):
            out.add(f'cls_token_{i}')
            pe = getattr(self, f'pos_embed_{i}', None)
            if pe is not None and pe.requires_grad:
                out.add(f'pos_embed_{i}')
        return out

    @torch.jit.ignore
    def group_matcher(self, coarse=False):
        return dict(
            stem=r'^cls_token|pos_embed|patch_embed',  # stem and embed
            blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))]
        )

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        assert not enable, 'gradient checkpointing not supported'

    @torch.jit.ignore
    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes, global_pool=None):
        self.num_classes = num_classes
        if global_pool is not None:
            assert global_pool in ('token', 'avg')
            self.global_pool = global_pool
        self.head = nn.ModuleList(
            [nn.Linear(self.embed_dim[i], num_classes) if num_classes > 0 else nn.Identity() for i in
             range(self.num_branches)])

    def forward_features(self, x) -> List[torch.Tensor]:
        B = x.shape[0]
        xs = []
        for i, patch_embed in enumerate(self.patch_embed):
            x_ = x
            ss = self.img_size_scaled[i]
            x_ = scale_image(x_, ss, self.crop_scale)
            x_ = patch_embed(x_)
            cls_tokens = self.cls_token_0 if i == 0 else self.cls_token_1  # hard-coded for torch jit script
            cls_tokens = cls_tokens.expand(B, -1, -1)
            x_ = torch.cat((cls_tokens, x_), dim=1)
            pos_embed = self.pos_embed_0 if i == 0 else self.pos_embed_1  # hard-coded for torch jit script
            x_ = x_ + pos_embed
            x_ = self.pos_drop(x_)
            xs.append(x_)

        for i, blk in enumerate(self.blocks):
            xs = blk(xs)

        # NOTE: was before branch token section, move to here to assure all branch token are before layer norm
        xs = [norm(xs[i]) for i, norm in enumerate(self.norm)]
        return xs

    def forward_head(self, xs: List[torch.Tensor], pre_logits: bool = False) -> torch.Tensor:
        xs = [x[:, 1:].mean(dim=1) for x in xs] if self.global_pool == 'avg' else [x[:, 0] for x in xs]
        xs = [self.head_drop(x) for x in xs]
        if pre_logits or isinstance(self.head[0], nn.Identity):
            return torch.cat([x for x in xs], dim=1)
        return torch.mean(torch.stack([head(xs[i]) for i, head in enumerate(self.head)], dim=0), dim=0)

    def forward(self, x):
        xs = self.forward_features(x)
        x = self.forward_head(xs)
        return x


def _create_crossvit(variant, pretrained=False, **kwargs):
    if kwargs.get('features_only', None):
        raise RuntimeError('features_only not implemented for Vision Transformer models.')

    def pretrained_filter_fn(state_dict):
        new_state_dict = {}
        for key in state_dict.keys():
            if 'pos_embed' in key or 'cls_token' in key:
                new_key = key.replace(".", "_")
            else:
                new_key = key
            new_state_dict[new_key] = state_dict[key]
        return new_state_dict

    return build_model_with_cfg(
        CrossVit,
        variant,
        pretrained,
        pretrained_filter_fn=pretrained_filter_fn,
        **kwargs,
    )


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 240, 240), 'pool_size': None, 'crop_pct': 0.875,
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'fixed_input_size': True,
        'first_conv': ('patch_embed.0.proj', 'patch_embed.1.proj'),
        'classifier': ('head.0', 'head.1'),
        **kwargs
    }


default_cfgs = generate_default_cfgs({
    'crossvit_15_240.in1k': _cfg(hf_hub_id='timm/'),
    'crossvit_15_dagger_240.in1k': _cfg(
        hf_hub_id='timm/',
        first_conv=('patch_embed.0.proj.0', 'patch_embed.1.proj.0'),
    ),
    'crossvit_15_dagger_408.in1k': _cfg(
        hf_hub_id='timm/',
        input_size=(3, 408, 408), first_conv=('patch_embed.0.proj.0', 'patch_embed.1.proj.0'), crop_pct=1.0,
    ),
    'crossvit_18_240.in1k': _cfg(hf_hub_id='timm/'),
    'crossvit_18_dagger_240.in1k': _cfg(
        hf_hub_id='timm/',
        first_conv=('patch_embed.0.proj.0', 'patch_embed.1.proj.0'),
    ),
    'crossvit_18_dagger_408.in1k': _cfg(
        hf_hub_id='timm/',
        input_size=(3, 408, 408), first_conv=('patch_embed.0.proj.0', 'patch_embed.1.proj.0'), crop_pct=1.0,
    ),
    'crossvit_9_240.in1k': _cfg(hf_hub_id='timm/'),
    'crossvit_9_dagger_240.in1k': _cfg(
        hf_hub_id='timm/',
        first_conv=('patch_embed.0.proj.0', 'patch_embed.1.proj.0'),
    ),
    'crossvit_base_240.in1k': _cfg(hf_hub_id='timm/'),
    'crossvit_small_240.in1k': _cfg(hf_hub_id='timm/'),
    'crossvit_tiny_240.in1k': _cfg(hf_hub_id='timm/'),
})


@register_model
def crossvit_tiny_240(pretrained=False, **kwargs) -> CrossVit:
    model_args = dict(
        img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[96, 192], depth=[[1, 4, 0], [1, 4, 0], [1, 4, 0]],
        num_heads=[3, 3], mlp_ratio=[4, 4, 1])
    model = _create_crossvit(variant='crossvit_tiny_240', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def crossvit_small_240(pretrained=False, **kwargs) -> CrossVit:
    model_args = dict(
        img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[192, 384], depth=[[1, 4, 0], [1, 4, 0], [1, 4, 0]],
        num_heads=[6, 6], mlp_ratio=[4, 4, 1])
    model = _create_crossvit(variant='crossvit_small_240', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def crossvit_base_240(pretrained=False, **kwargs) -> CrossVit:
    model_args = dict(
        img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[384, 768], depth=[[1, 4, 0], [1, 4, 0], [1, 4, 0]],
        num_heads=[12, 12], mlp_ratio=[4, 4, 1])
    model = _create_crossvit(variant='crossvit_base_240', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def crossvit_9_240(pretrained=False, **kwargs) -> CrossVit:
    model_args = dict(
        img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[128, 256], depth=[[1, 3, 0], [1, 3, 0], [1, 3, 0]],
        num_heads=[4, 4], mlp_ratio=[3, 3, 1])
    model = _create_crossvit(variant='crossvit_9_240', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def crossvit_15_240(pretrained=False, **kwargs) -> CrossVit:
    model_args = dict(
        img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[192, 384], depth=[[1, 5, 0], [1, 5, 0], [1, 5, 0]],
        num_heads=[6, 6], mlp_ratio=[3, 3, 1])
    model = _create_crossvit(variant='crossvit_15_240', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def crossvit_18_240(pretrained=False, **kwargs) -> CrossVit:
    model_args = dict(
        img_scale=(1.0, 224 / 240), patch_size=[12, 16], embed_dim=[224, 448], depth=[[1, 6, 0], [1, 6, 0], [1, 6, 0]],
        num_heads=[7, 7], mlp_ratio=[3, 3, 1], **kwargs)
    model = _create_crossvit(variant='crossvit_18_240', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def crossvit_9_dagger_240(pretrained=False, **kwargs) -> CrossVit:
    model_args = dict(
        img_scale=(1.0, 224 / 240), patch_size=[12, 16], embed_dim=[128, 256], depth=[[1, 3, 0], [1, 3, 0], [1, 3, 0]],
        num_heads=[4, 4], mlp_ratio=[3, 3, 1], multi_conv=True)
    model = _create_crossvit(variant='crossvit_9_dagger_240', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def crossvit_15_dagger_240(pretrained=False, **kwargs) -> CrossVit:
    model_args = dict(
        img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[192, 384], depth=[[1, 5, 0], [1, 5, 0], [1, 5, 0]],
        num_heads=[6, 6], mlp_ratio=[3, 3, 1], multi_conv=True)
    model = _create_crossvit(variant='crossvit_15_dagger_240', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def crossvit_15_dagger_408(pretrained=False, **kwargs) -> CrossVit:
    model_args = dict(
        img_scale=(1.0, 384/408), patch_size=[12, 16], embed_dim=[192, 384], depth=[[1, 5, 0], [1, 5, 0], [1, 5, 0]],
        num_heads=[6, 6], mlp_ratio=[3, 3, 1], multi_conv=True)
    model = _create_crossvit(variant='crossvit_15_dagger_408', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def crossvit_18_dagger_240(pretrained=False, **kwargs) -> CrossVit:
    model_args = dict(
        img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[224, 448], depth=[[1, 6, 0], [1, 6, 0], [1, 6, 0]],
        num_heads=[7, 7], mlp_ratio=[3, 3, 1], multi_conv=True)
    model = _create_crossvit(variant='crossvit_18_dagger_240', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def crossvit_18_dagger_408(pretrained=False, **kwargs) -> CrossVit:
    model_args = dict(
        img_scale=(1.0, 384/408), patch_size=[12, 16], embed_dim=[224, 448], depth=[[1, 6, 0], [1, 6, 0], [1, 6, 0]],
        num_heads=[7, 7], mlp_ratio=[3, 3, 1], multi_conv=True)
    model = _create_crossvit(variant='crossvit_18_dagger_408', pretrained=pretrained, **dict(model_args, **kwargs))
    return model