File size: 15,301 Bytes
786f6a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
""" ConViT Model
@article{d2021convit,
title={ConViT: Improving Vision Transformers with Soft Convolutional Inductive Biases},
author={d'Ascoli, St{\'e}phane and Touvron, Hugo and Leavitt, Matthew and Morcos, Ari and Biroli, Giulio and Sagun, Levent},
journal={arXiv preprint arXiv:2103.10697},
year={2021}
}
Paper link: https://arxiv.org/abs/2103.10697
Original code: https://github.com/facebookresearch/convit, original copyright below
Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman
"""
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the CC-by-NC license found in the
# LICENSE file in the root directory of this source tree.
#
'''These modules are adapted from those of timm, see
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
'''
from functools import partial
import torch
import torch.nn as nn
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import DropPath, trunc_normal_, PatchEmbed, Mlp, LayerNorm
from ._builder import build_model_with_cfg
from ._features_fx import register_notrace_module
from ._registry import register_model, generate_default_cfgs
from .vision_transformer_hybrid import HybridEmbed
__all__ = ['ConVit']
@register_notrace_module # reason: FX can't symbolically trace control flow in forward method
class GPSA(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
attn_drop=0.,
proj_drop=0.,
locality_strength=1.,
):
super().__init__()
self.num_heads = num_heads
self.dim = dim
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.locality_strength = locality_strength
self.qk = nn.Linear(dim, dim * 2, bias=qkv_bias)
self.v = nn.Linear(dim, dim, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.pos_proj = nn.Linear(3, num_heads)
self.proj_drop = nn.Dropout(proj_drop)
self.gating_param = nn.Parameter(torch.ones(self.num_heads))
self.rel_indices: torch.Tensor = torch.zeros(1, 1, 1, 3) # silly torchscript hack, won't work with None
def forward(self, x):
B, N, C = x.shape
if self.rel_indices is None or self.rel_indices.shape[1] != N:
self.rel_indices = self.get_rel_indices(N)
attn = self.get_attention(x)
v = self.v(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
def get_attention(self, x):
B, N, C = x.shape
qk = self.qk(x).reshape(B, N, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k = qk[0], qk[1]
pos_score = self.rel_indices.expand(B, -1, -1, -1)
pos_score = self.pos_proj(pos_score).permute(0, 3, 1, 2)
patch_score = (q @ k.transpose(-2, -1)) * self.scale
patch_score = patch_score.softmax(dim=-1)
pos_score = pos_score.softmax(dim=-1)
gating = self.gating_param.view(1, -1, 1, 1)
attn = (1. - torch.sigmoid(gating)) * patch_score + torch.sigmoid(gating) * pos_score
attn /= attn.sum(dim=-1).unsqueeze(-1)
attn = self.attn_drop(attn)
return attn
def get_attention_map(self, x, return_map=False):
attn_map = self.get_attention(x).mean(0) # average over batch
distances = self.rel_indices.squeeze()[:, :, -1] ** .5
dist = torch.einsum('nm,hnm->h', (distances, attn_map)) / distances.size(0)
if return_map:
return dist, attn_map
else:
return dist
def local_init(self):
self.v.weight.data.copy_(torch.eye(self.dim))
locality_distance = 1 # max(1,1/locality_strength**.5)
kernel_size = int(self.num_heads ** .5)
center = (kernel_size - 1) / 2 if kernel_size % 2 == 0 else kernel_size // 2
for h1 in range(kernel_size):
for h2 in range(kernel_size):
position = h1 + kernel_size * h2
self.pos_proj.weight.data[position, 2] = -1
self.pos_proj.weight.data[position, 1] = 2 * (h1 - center) * locality_distance
self.pos_proj.weight.data[position, 0] = 2 * (h2 - center) * locality_distance
self.pos_proj.weight.data *= self.locality_strength
def get_rel_indices(self, num_patches: int) -> torch.Tensor:
img_size = int(num_patches ** .5)
rel_indices = torch.zeros(1, num_patches, num_patches, 3)
ind = torch.arange(img_size).view(1, -1) - torch.arange(img_size).view(-1, 1)
indx = ind.repeat(img_size, img_size)
indy = ind.repeat_interleave(img_size, dim=0).repeat_interleave(img_size, dim=1)
indd = indx ** 2 + indy ** 2
rel_indices[:, :, :, 2] = indd.unsqueeze(0)
rel_indices[:, :, :, 1] = indy.unsqueeze(0)
rel_indices[:, :, :, 0] = indx.unsqueeze(0)
device = self.qk.weight.device
return rel_indices.to(device)
class MHSA(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
attn_drop=0.,
proj_drop=0.,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def get_attention_map(self, x, return_map=False):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
attn_map = (q @ k.transpose(-2, -1)) * self.scale
attn_map = attn_map.softmax(dim=-1).mean(0)
img_size = int(N ** .5)
ind = torch.arange(img_size).view(1, -1) - torch.arange(img_size).view(-1, 1)
indx = ind.repeat(img_size, img_size)
indy = ind.repeat_interleave(img_size, dim=0).repeat_interleave(img_size, dim=1)
indd = indx ** 2 + indy ** 2
distances = indd ** .5
distances = distances.to(x.device)
dist = torch.einsum('nm,hnm->h', (distances, attn_map)) / N
if return_map:
return dist, attn_map
else:
return dist
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.,
qkv_bias=False,
proj_drop=0.,
attn_drop=0.,
drop_path=0.,
act_layer=nn.GELU,
norm_layer=LayerNorm,
use_gpsa=True,
locality_strength=1.,
):
super().__init__()
self.norm1 = norm_layer(dim)
self.use_gpsa = use_gpsa
if self.use_gpsa:
self.attn = GPSA(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=proj_drop,
locality_strength=locality_strength,
)
else:
self.attn = MHSA(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=proj_drop,
)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=proj_drop,
)
def forward(self, x):
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class ConVit(nn.Module):
""" Vision Transformer with support for patch or hybrid CNN input stage
"""
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
num_classes=1000,
global_pool='token',
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4.,
qkv_bias=False,
drop_rate=0.,
pos_drop_rate=0.,
proj_drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.,
hybrid_backbone=None,
norm_layer=LayerNorm,
local_up_to_layer=3,
locality_strength=1.,
use_pos_embed=True,
):
super().__init__()
assert global_pool in ('', 'avg', 'token')
embed_dim *= num_heads
self.num_classes = num_classes
self.global_pool = global_pool
self.local_up_to_layer = local_up_to_layer
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.locality_strength = locality_strength
self.use_pos_embed = use_pos_embed
if hybrid_backbone is not None:
self.patch_embed = HybridEmbed(
hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim)
else:
self.patch_embed = PatchEmbed(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
)
num_patches = self.patch_embed.num_patches
self.num_patches = num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_drop = nn.Dropout(p=pos_drop_rate)
if self.use_pos_embed:
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
trunc_normal_(self.pos_embed, std=.02)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks = nn.ModuleList([
Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
proj_drop=proj_drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
use_gpsa=i < local_up_to_layer,
locality_strength=locality_strength,
) for i in range(depth)])
self.norm = norm_layer(embed_dim)
# Classifier head
self.feature_info = [dict(num_chs=embed_dim, reduction=0, module='head')]
self.head_drop = nn.Dropout(drop_rate)
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
trunc_normal_(self.cls_token, std=.02)
self.apply(self._init_weights)
for n, m in self.named_modules():
if hasattr(m, 'local_init'):
m.local_init()
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
@torch.jit.ignore
def group_matcher(self, coarse=False):
return dict(
stem=r'^cls_token|pos_embed|patch_embed', # stem and embed
blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))]
)
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
assert not enable, 'gradient checkpointing not supported'
@torch.jit.ignore
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=None):
self.num_classes = num_classes
if global_pool is not None:
assert global_pool in ('', 'token', 'avg')
self.global_pool = global_pool
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def forward_features(self, x):
x = self.patch_embed(x)
if self.use_pos_embed:
x = x + self.pos_embed
x = self.pos_drop(x)
cls_tokens = self.cls_token.expand(x.shape[0], -1, -1)
for u, blk in enumerate(self.blocks):
if u == self.local_up_to_layer:
x = torch.cat((cls_tokens, x), dim=1)
x = blk(x)
x = self.norm(x)
return x
def forward_head(self, x, pre_logits: bool = False):
if self.global_pool:
x = x[:, 1:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0]
x = self.head_drop(x)
return x if pre_logits else self.head(x)
def forward(self, x):
x = self.forward_features(x)
x = self.forward_head(x)
return x
def _create_convit(variant, pretrained=False, **kwargs):
if kwargs.get('features_only', None):
raise RuntimeError('features_only not implemented for Vision Transformer models.')
return build_model_with_cfg(ConVit, variant, pretrained, **kwargs)
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'fixed_input_size': True,
'first_conv': 'patch_embed.proj', 'classifier': 'head',
**kwargs
}
default_cfgs = generate_default_cfgs({
# ConViT
'convit_tiny.fb_in1k': _cfg(hf_hub_id='timm/'),
'convit_small.fb_in1k': _cfg(hf_hub_id='timm/'),
'convit_base.fb_in1k': _cfg(hf_hub_id='timm/')
})
@register_model
def convit_tiny(pretrained=False, **kwargs) -> ConVit:
model_args = dict(
local_up_to_layer=10, locality_strength=1.0, embed_dim=48, num_heads=4)
model = _create_convit(variant='convit_tiny', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def convit_small(pretrained=False, **kwargs) -> ConVit:
model_args = dict(
local_up_to_layer=10, locality_strength=1.0, embed_dim=48, num_heads=9)
model = _create_convit(variant='convit_small', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def convit_base(pretrained=False, **kwargs) -> ConVit:
model_args = dict(
local_up_to_layer=10, locality_strength=1.0, embed_dim=48, num_heads=16)
model = _create_convit(variant='convit_base', pretrained=pretrained, **dict(model_args, **kwargs))
return model
|