File size: 15,301 Bytes
786f6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
""" ConViT Model

@article{d2021convit,
  title={ConViT: Improving Vision Transformers with Soft Convolutional Inductive Biases},
  author={d'Ascoli, St{\'e}phane and Touvron, Hugo and Leavitt, Matthew and Morcos, Ari and Biroli, Giulio and Sagun, Levent},
  journal={arXiv preprint arXiv:2103.10697},
  year={2021}
}

Paper link: https://arxiv.org/abs/2103.10697
Original code: https://github.com/facebookresearch/convit, original copyright below

Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman
"""
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the CC-by-NC license found in the
# LICENSE file in the root directory of this source tree.
#
'''These modules are adapted from those of timm, see
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
'''

from functools import partial

import torch
import torch.nn as nn

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import DropPath, trunc_normal_, PatchEmbed, Mlp, LayerNorm
from ._builder import build_model_with_cfg
from ._features_fx import register_notrace_module
from ._registry import register_model, generate_default_cfgs
from .vision_transformer_hybrid import HybridEmbed


__all__ = ['ConVit']


@register_notrace_module  # reason: FX can't symbolically trace control flow in forward method
class GPSA(nn.Module):
    def __init__(
            self,
            dim,
            num_heads=8,
            qkv_bias=False,
            attn_drop=0.,
            proj_drop=0.,
            locality_strength=1.,
    ):
        super().__init__()
        self.num_heads = num_heads
        self.dim = dim
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5
        self.locality_strength = locality_strength

        self.qk = nn.Linear(dim, dim * 2, bias=qkv_bias)
        self.v = nn.Linear(dim, dim, bias=qkv_bias)

        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.pos_proj = nn.Linear(3, num_heads)
        self.proj_drop = nn.Dropout(proj_drop)
        self.gating_param = nn.Parameter(torch.ones(self.num_heads))
        self.rel_indices: torch.Tensor = torch.zeros(1, 1, 1, 3)  # silly torchscript hack, won't work with None

    def forward(self, x):
        B, N, C = x.shape
        if self.rel_indices is None or self.rel_indices.shape[1] != N:
            self.rel_indices = self.get_rel_indices(N)
        attn = self.get_attention(x)
        v = self.v(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

    def get_attention(self, x):
        B, N, C = x.shape
        qk = self.qk(x).reshape(B, N, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k = qk[0], qk[1]
        pos_score = self.rel_indices.expand(B, -1, -1, -1)
        pos_score = self.pos_proj(pos_score).permute(0, 3, 1, 2)
        patch_score = (q @ k.transpose(-2, -1)) * self.scale
        patch_score = patch_score.softmax(dim=-1)
        pos_score = pos_score.softmax(dim=-1)

        gating = self.gating_param.view(1, -1, 1, 1)
        attn = (1. - torch.sigmoid(gating)) * patch_score + torch.sigmoid(gating) * pos_score
        attn /= attn.sum(dim=-1).unsqueeze(-1)
        attn = self.attn_drop(attn)
        return attn

    def get_attention_map(self, x, return_map=False):
        attn_map = self.get_attention(x).mean(0)  # average over batch
        distances = self.rel_indices.squeeze()[:, :, -1] ** .5
        dist = torch.einsum('nm,hnm->h', (distances, attn_map)) / distances.size(0)
        if return_map:
            return dist, attn_map
        else:
            return dist

    def local_init(self):
        self.v.weight.data.copy_(torch.eye(self.dim))
        locality_distance = 1  # max(1,1/locality_strength**.5)

        kernel_size = int(self.num_heads ** .5)
        center = (kernel_size - 1) / 2 if kernel_size % 2 == 0 else kernel_size // 2
        for h1 in range(kernel_size):
            for h2 in range(kernel_size):
                position = h1 + kernel_size * h2
                self.pos_proj.weight.data[position, 2] = -1
                self.pos_proj.weight.data[position, 1] = 2 * (h1 - center) * locality_distance
                self.pos_proj.weight.data[position, 0] = 2 * (h2 - center) * locality_distance
        self.pos_proj.weight.data *= self.locality_strength

    def get_rel_indices(self, num_patches: int) -> torch.Tensor:
        img_size = int(num_patches ** .5)
        rel_indices = torch.zeros(1, num_patches, num_patches, 3)
        ind = torch.arange(img_size).view(1, -1) - torch.arange(img_size).view(-1, 1)
        indx = ind.repeat(img_size, img_size)
        indy = ind.repeat_interleave(img_size, dim=0).repeat_interleave(img_size, dim=1)
        indd = indx ** 2 + indy ** 2
        rel_indices[:, :, :, 2] = indd.unsqueeze(0)
        rel_indices[:, :, :, 1] = indy.unsqueeze(0)
        rel_indices[:, :, :, 0] = indx.unsqueeze(0)
        device = self.qk.weight.device
        return rel_indices.to(device)


class MHSA(nn.Module):
    def __init__(
            self,
            dim,
            num_heads=8,
            qkv_bias=False,
            attn_drop=0.,
            proj_drop=0.,
    ):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def get_attention_map(self, x, return_map=False):
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]
        attn_map = (q @ k.transpose(-2, -1)) * self.scale
        attn_map = attn_map.softmax(dim=-1).mean(0)

        img_size = int(N ** .5)
        ind = torch.arange(img_size).view(1, -1) - torch.arange(img_size).view(-1, 1)
        indx = ind.repeat(img_size, img_size)
        indy = ind.repeat_interleave(img_size, dim=0).repeat_interleave(img_size, dim=1)
        indd = indx ** 2 + indy ** 2
        distances = indd ** .5
        distances = distances.to(x.device)

        dist = torch.einsum('nm,hnm->h', (distances, attn_map)) / N
        if return_map:
            return dist, attn_map
        else:
            return dist

    def forward(self, x):
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv.unbind(0)

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class Block(nn.Module):

    def __init__(
            self,
            dim,
            num_heads,
            mlp_ratio=4.,
            qkv_bias=False,
            proj_drop=0.,
            attn_drop=0.,
            drop_path=0.,
            act_layer=nn.GELU,
            norm_layer=LayerNorm,
            use_gpsa=True,
            locality_strength=1.,
    ):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.use_gpsa = use_gpsa
        if self.use_gpsa:
            self.attn = GPSA(
                dim,
                num_heads=num_heads,
                qkv_bias=qkv_bias,
                attn_drop=attn_drop,
                proj_drop=proj_drop,
                locality_strength=locality_strength,
            )
        else:
            self.attn = MHSA(
                dim,
                num_heads=num_heads,
                qkv_bias=qkv_bias,
                attn_drop=attn_drop,
                proj_drop=proj_drop,
            )
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(
            in_features=dim,
            hidden_features=mlp_hidden_dim,
            act_layer=act_layer,
            drop=proj_drop,
        )

    def forward(self, x):
        x = x + self.drop_path(self.attn(self.norm1(x)))
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x


class ConVit(nn.Module):
    """ Vision Transformer with support for patch or hybrid CNN input stage
    """

    def __init__(
            self,
            img_size=224,
            patch_size=16,
            in_chans=3,
            num_classes=1000,
            global_pool='token',
            embed_dim=768,
            depth=12,
            num_heads=12,
            mlp_ratio=4.,
            qkv_bias=False,
            drop_rate=0.,
            pos_drop_rate=0.,
            proj_drop_rate=0.,
            attn_drop_rate=0.,
            drop_path_rate=0.,
            hybrid_backbone=None,
            norm_layer=LayerNorm,
            local_up_to_layer=3,
            locality_strength=1.,
            use_pos_embed=True,
    ):
        super().__init__()
        assert global_pool in ('', 'avg', 'token')
        embed_dim *= num_heads
        self.num_classes = num_classes
        self.global_pool = global_pool
        self.local_up_to_layer = local_up_to_layer
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
        self.locality_strength = locality_strength
        self.use_pos_embed = use_pos_embed

        if hybrid_backbone is not None:
            self.patch_embed = HybridEmbed(
                hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim)
        else:
            self.patch_embed = PatchEmbed(
                img_size=img_size,
                patch_size=patch_size,
                in_chans=in_chans,
                embed_dim=embed_dim,
            )
        num_patches = self.patch_embed.num_patches
        self.num_patches = num_patches

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.pos_drop = nn.Dropout(p=pos_drop_rate)

        if self.use_pos_embed:
            self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
            trunc_normal_(self.pos_embed, std=.02)

        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule
        self.blocks = nn.ModuleList([
            Block(
                dim=embed_dim,
                num_heads=num_heads,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                proj_drop=proj_drop_rate,
                attn_drop=attn_drop_rate,
                drop_path=dpr[i],
                norm_layer=norm_layer,
                use_gpsa=i < local_up_to_layer,
                locality_strength=locality_strength,
            ) for i in range(depth)])
        self.norm = norm_layer(embed_dim)

        # Classifier head
        self.feature_info = [dict(num_chs=embed_dim, reduction=0, module='head')]
        self.head_drop = nn.Dropout(drop_rate)
        self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()

        trunc_normal_(self.cls_token, std=.02)
        self.apply(self._init_weights)
        for n, m in self.named_modules():
            if hasattr(m, 'local_init'):
                m.local_init()

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed', 'cls_token'}

    @torch.jit.ignore
    def group_matcher(self, coarse=False):
        return dict(
            stem=r'^cls_token|pos_embed|patch_embed',  # stem and embed
            blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))]
        )

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        assert not enable, 'gradient checkpointing not supported'

    @torch.jit.ignore
    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes, global_pool=None):
        self.num_classes = num_classes
        if global_pool is not None:
            assert global_pool in ('', 'token', 'avg')
            self.global_pool = global_pool
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()

    def forward_features(self, x):
        x = self.patch_embed(x)
        if self.use_pos_embed:
            x = x + self.pos_embed
        x = self.pos_drop(x)
        cls_tokens = self.cls_token.expand(x.shape[0], -1, -1)
        for u, blk in enumerate(self.blocks):
            if u == self.local_up_to_layer:
                x = torch.cat((cls_tokens, x), dim=1)
            x = blk(x)
        x = self.norm(x)
        return x

    def forward_head(self, x, pre_logits: bool = False):
        if self.global_pool:
            x = x[:, 1:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0]
        x = self.head_drop(x)
        return x if pre_logits else self.head(x)

    def forward(self, x):
        x = self.forward_features(x)
        x = self.forward_head(x)
        return x


def _create_convit(variant, pretrained=False, **kwargs):
    if kwargs.get('features_only', None):
        raise RuntimeError('features_only not implemented for Vision Transformer models.')

    return build_model_with_cfg(ConVit, variant, pretrained, **kwargs)


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'fixed_input_size': True,
        'first_conv': 'patch_embed.proj', 'classifier': 'head',
        **kwargs
    }


default_cfgs = generate_default_cfgs({
    # ConViT
    'convit_tiny.fb_in1k': _cfg(hf_hub_id='timm/'),
    'convit_small.fb_in1k': _cfg(hf_hub_id='timm/'),
    'convit_base.fb_in1k': _cfg(hf_hub_id='timm/')
})


@register_model
def convit_tiny(pretrained=False, **kwargs) -> ConVit:
    model_args = dict(
        local_up_to_layer=10, locality_strength=1.0, embed_dim=48, num_heads=4)
    model = _create_convit(variant='convit_tiny', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def convit_small(pretrained=False, **kwargs) -> ConVit:
    model_args = dict(
        local_up_to_layer=10, locality_strength=1.0, embed_dim=48, num_heads=9)
    model = _create_convit(variant='convit_small', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def convit_base(pretrained=False, **kwargs) -> ConVit:
    model_args = dict(
        local_up_to_layer=10, locality_strength=1.0, embed_dim=48, num_heads=16)
    model = _create_convit(variant='convit_base', pretrained=pretrained, **dict(model_args, **kwargs))
    return model