File size: 30,015 Bytes
786f6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
""" 
CoaT architecture.

Paper: Co-Scale Conv-Attentional Image Transformers - https://arxiv.org/abs/2104.06399

Official CoaT code at: https://github.com/mlpc-ucsd/CoaT

Modified from timm/models/vision_transformer.py
"""
from functools import partial
from typing import Tuple, List, Union

import torch
import torch.nn as nn
import torch.nn.functional as F

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import PatchEmbed, Mlp, DropPath, to_2tuple, trunc_normal_, _assert, LayerNorm
from ._builder import build_model_with_cfg
from ._registry import register_model, generate_default_cfgs

__all__ = ['CoaT']


class ConvRelPosEnc(nn.Module):
    """ Convolutional relative position encoding. """
    def __init__(self, head_chs, num_heads, window):
        """
        Initialization.
            Ch: Channels per head.
            h: Number of heads.
            window: Window size(s) in convolutional relative positional encoding. It can have two forms:
                1. An integer of window size, which assigns all attention heads with the same window s
                    size in ConvRelPosEnc.
                2. A dict mapping window size to #attention head splits (
                    e.g. {window size 1: #attention head split 1, window size 2: #attention head split 2})
                    It will apply different window size to the attention head splits.
        """
        super().__init__()

        if isinstance(window, int):
            # Set the same window size for all attention heads.
            window = {window: num_heads}
            self.window = window
        elif isinstance(window, dict):
            self.window = window
        else:
            raise ValueError()            
        
        self.conv_list = nn.ModuleList()
        self.head_splits = []
        for cur_window, cur_head_split in window.items():
            dilation = 1
            # Determine padding size.
            # Ref: https://discuss.pytorch.org/t/how-to-keep-the-shape-of-input-and-output-same-when-dilation-conv/14338
            padding_size = (cur_window + (cur_window - 1) * (dilation - 1)) // 2
            cur_conv = nn.Conv2d(
                cur_head_split * head_chs,
                cur_head_split * head_chs,
                kernel_size=(cur_window, cur_window), 
                padding=(padding_size, padding_size),
                dilation=(dilation, dilation),                          
                groups=cur_head_split * head_chs,
            )
            self.conv_list.append(cur_conv)
            self.head_splits.append(cur_head_split)
        self.channel_splits = [x * head_chs for x in self.head_splits]

    def forward(self, q, v, size: Tuple[int, int]):
        B, num_heads, N, C = q.shape
        H, W = size
        _assert(N == 1 + H * W, '')

        # Convolutional relative position encoding.
        q_img = q[:, :, 1:, :]  # [B, h, H*W, Ch]
        v_img = v[:, :, 1:, :]  # [B, h, H*W, Ch]

        v_img = v_img.transpose(-1, -2).reshape(B, num_heads * C, H, W)
        v_img_list = torch.split(v_img, self.channel_splits, dim=1)  # Split according to channels
        conv_v_img_list = []
        for i, conv in enumerate(self.conv_list):
            conv_v_img_list.append(conv(v_img_list[i]))
        conv_v_img = torch.cat(conv_v_img_list, dim=1)
        conv_v_img = conv_v_img.reshape(B, num_heads, C, H * W).transpose(-1, -2)

        EV_hat = q_img * conv_v_img
        EV_hat = F.pad(EV_hat, (0, 0, 1, 0, 0, 0))  # [B, h, N, Ch].
        return EV_hat


class FactorAttnConvRelPosEnc(nn.Module):
    """ Factorized attention with convolutional relative position encoding class. """
    def __init__(
            self,
            dim,
            num_heads=8,
            qkv_bias=False,
            attn_drop=0.,
            proj_drop=0.,
            shared_crpe=None,
    ):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)  # Note: attn_drop is actually not used.
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        # Shared convolutional relative position encoding.
        self.crpe = shared_crpe

    def forward(self, x, size: Tuple[int, int]):
        B, N, C = x.shape

        # Generate Q, K, V.
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv.unbind(0)  # [B, h, N, Ch]

        # Factorized attention.
        k_softmax = k.softmax(dim=2)
        factor_att = k_softmax.transpose(-1, -2) @ v
        factor_att = q @ factor_att

        # Convolutional relative position encoding.
        crpe = self.crpe(q, v, size=size)  # [B, h, N, Ch]

        # Merge and reshape.
        x = self.scale * factor_att + crpe
        x = x.transpose(1, 2).reshape(B, N, C)  # [B, h, N, Ch] -> [B, N, h, Ch] -> [B, N, C]

        # Output projection.
        x = self.proj(x)
        x = self.proj_drop(x)

        return x


class ConvPosEnc(nn.Module):
    """ Convolutional Position Encoding. 
        Note: This module is similar to the conditional position encoding in CPVT.
    """
    def __init__(self, dim, k=3):
        super(ConvPosEnc, self).__init__()
        self.proj = nn.Conv2d(dim, dim, k, 1, k//2, groups=dim) 
    
    def forward(self, x, size: Tuple[int, int]):
        B, N, C = x.shape
        H, W = size
        _assert(N == 1 + H * W, '')

        # Extract CLS token and image tokens.
        cls_token, img_tokens = x[:, :1], x[:, 1:]  # [B, 1, C], [B, H*W, C]
        
        # Depthwise convolution.
        feat = img_tokens.transpose(1, 2).view(B, C, H, W)
        x = self.proj(feat) + feat
        x = x.flatten(2).transpose(1, 2)

        # Combine with CLS token.
        x = torch.cat((cls_token, x), dim=1)

        return x


class SerialBlock(nn.Module):
    """ Serial block class.
        Note: In this implementation, each serial block only contains a conv-attention and a FFN (MLP) module. """
    def __init__(
            self,
            dim,
            num_heads,
            mlp_ratio=4.,
            qkv_bias=False,
            proj_drop=0.,
            attn_drop=0.,
            drop_path=0.,
            act_layer=nn.GELU,
            norm_layer=nn.LayerNorm,
            shared_cpe=None,
            shared_crpe=None,
    ):
        super().__init__()

        # Conv-Attention.
        self.cpe = shared_cpe

        self.norm1 = norm_layer(dim)
        self.factoratt_crpe = FactorAttnConvRelPosEnc(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            attn_drop=attn_drop,
            proj_drop=proj_drop,
            shared_crpe=shared_crpe,
        )
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

        # MLP.
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(
            in_features=dim,
            hidden_features=mlp_hidden_dim,
            act_layer=act_layer,
            drop=proj_drop,
        )

    def forward(self, x, size: Tuple[int, int]):
        # Conv-Attention.
        x = self.cpe(x, size)
        cur = self.norm1(x)
        cur = self.factoratt_crpe(cur, size)
        x = x + self.drop_path(cur) 

        # MLP. 
        cur = self.norm2(x)
        cur = self.mlp(cur)
        x = x + self.drop_path(cur)

        return x


class ParallelBlock(nn.Module):
    """ Parallel block class. """
    def __init__(
            self,
            dims,
            num_heads,
            mlp_ratios=[],
            qkv_bias=False,
            proj_drop=0.,
            attn_drop=0.,
            drop_path=0.,
            act_layer=nn.GELU,
            norm_layer=nn.LayerNorm,
            shared_crpes=None,
    ):
        super().__init__()

        # Conv-Attention.
        self.norm12 = norm_layer(dims[1])
        self.norm13 = norm_layer(dims[2])
        self.norm14 = norm_layer(dims[3])
        self.factoratt_crpe2 = FactorAttnConvRelPosEnc(
            dims[1],
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            attn_drop=attn_drop,
            proj_drop=proj_drop,
            shared_crpe=shared_crpes[1],
        )
        self.factoratt_crpe3 = FactorAttnConvRelPosEnc(
            dims[2],
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            attn_drop=attn_drop,
            proj_drop=proj_drop,
            shared_crpe=shared_crpes[2],
        )
        self.factoratt_crpe4 = FactorAttnConvRelPosEnc(
            dims[3],
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            attn_drop=attn_drop,
            proj_drop=proj_drop,
            shared_crpe=shared_crpes[3],
        )
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

        # MLP.
        self.norm22 = norm_layer(dims[1])
        self.norm23 = norm_layer(dims[2])
        self.norm24 = norm_layer(dims[3])
        # In parallel block, we assume dimensions are the same and share the linear transformation.
        assert dims[1] == dims[2] == dims[3]
        assert mlp_ratios[1] == mlp_ratios[2] == mlp_ratios[3]
        mlp_hidden_dim = int(dims[1] * mlp_ratios[1])
        self.mlp2 = self.mlp3 = self.mlp4 = Mlp(
            in_features=dims[1],
            hidden_features=mlp_hidden_dim,
            act_layer=act_layer,
            drop=proj_drop,
        )

    def upsample(self, x, factor: float, size: Tuple[int, int]):
        """ Feature map up-sampling. """
        return self.interpolate(x, scale_factor=factor, size=size)

    def downsample(self, x, factor: float, size: Tuple[int, int]):
        """ Feature map down-sampling. """
        return self.interpolate(x, scale_factor=1.0/factor, size=size)

    def interpolate(self, x, scale_factor: float, size: Tuple[int, int]):
        """ Feature map interpolation. """
        B, N, C = x.shape
        H, W = size
        _assert(N == 1 + H * W, '')

        cls_token = x[:, :1, :]
        img_tokens = x[:, 1:, :]
        
        img_tokens = img_tokens.transpose(1, 2).reshape(B, C, H, W)
        img_tokens = F.interpolate(
            img_tokens,
            scale_factor=scale_factor,
            recompute_scale_factor=False,
            mode='bilinear',
            align_corners=False,
        )
        img_tokens = img_tokens.reshape(B, C, -1).transpose(1, 2)
        
        out = torch.cat((cls_token, img_tokens), dim=1)

        return out

    def forward(self, x1, x2, x3, x4, sizes: List[Tuple[int, int]]):
        _, S2, S3, S4 = sizes
        cur2 = self.norm12(x2)
        cur3 = self.norm13(x3)
        cur4 = self.norm14(x4)
        cur2 = self.factoratt_crpe2(cur2, size=S2)
        cur3 = self.factoratt_crpe3(cur3, size=S3)
        cur4 = self.factoratt_crpe4(cur4, size=S4)
        upsample3_2 = self.upsample(cur3, factor=2., size=S3)
        upsample4_3 = self.upsample(cur4, factor=2., size=S4)
        upsample4_2 = self.upsample(cur4, factor=4., size=S4)
        downsample2_3 = self.downsample(cur2, factor=2., size=S2)
        downsample3_4 = self.downsample(cur3, factor=2., size=S3)
        downsample2_4 = self.downsample(cur2, factor=4., size=S2)
        cur2 = cur2 + upsample3_2 + upsample4_2
        cur3 = cur3 + upsample4_3 + downsample2_3
        cur4 = cur4 + downsample3_4 + downsample2_4
        x2 = x2 + self.drop_path(cur2) 
        x3 = x3 + self.drop_path(cur3) 
        x4 = x4 + self.drop_path(cur4) 

        # MLP. 
        cur2 = self.norm22(x2)
        cur3 = self.norm23(x3)
        cur4 = self.norm24(x4)
        cur2 = self.mlp2(cur2)
        cur3 = self.mlp3(cur3)
        cur4 = self.mlp4(cur4)
        x2 = x2 + self.drop_path(cur2)
        x3 = x3 + self.drop_path(cur3)
        x4 = x4 + self.drop_path(cur4) 

        return x1, x2, x3, x4


class CoaT(nn.Module):
    """ CoaT class. """
    def __init__(
            self,
            img_size=224,
            patch_size=16,
            in_chans=3,
            num_classes=1000,
            embed_dims=(64, 128, 320, 512),
            serial_depths=(3, 4, 6, 3),
            parallel_depth=0,
            num_heads=8,
            mlp_ratios=(4, 4, 4, 4),
            qkv_bias=True,
            drop_rate=0.,
            proj_drop_rate=0.,
            attn_drop_rate=0.,
            drop_path_rate=0.,
            norm_layer=LayerNorm,
            return_interm_layers=False,
            out_features=None,
            crpe_window=None,
            global_pool='token',
    ):
        super().__init__()
        assert global_pool in ('token', 'avg')
        crpe_window = crpe_window or {3: 2, 5: 3, 7: 3}
        self.return_interm_layers = return_interm_layers
        self.out_features = out_features
        self.embed_dims = embed_dims
        self.num_features = embed_dims[-1]
        self.num_classes = num_classes
        self.global_pool = global_pool

        # Patch embeddings.
        img_size = to_2tuple(img_size)
        self.patch_embed1 = PatchEmbed(
            img_size=img_size, patch_size=patch_size, in_chans=in_chans,
            embed_dim=embed_dims[0], norm_layer=nn.LayerNorm)
        self.patch_embed2 = PatchEmbed(
            img_size=[x // 4 for x in img_size], patch_size=2, in_chans=embed_dims[0],
            embed_dim=embed_dims[1], norm_layer=nn.LayerNorm)
        self.patch_embed3 = PatchEmbed(
            img_size=[x // 8 for x in img_size], patch_size=2, in_chans=embed_dims[1],
            embed_dim=embed_dims[2], norm_layer=nn.LayerNorm)
        self.patch_embed4 = PatchEmbed(
            img_size=[x // 16 for x in img_size], patch_size=2, in_chans=embed_dims[2],
            embed_dim=embed_dims[3], norm_layer=nn.LayerNorm)

        # Class tokens.
        self.cls_token1 = nn.Parameter(torch.zeros(1, 1, embed_dims[0]))
        self.cls_token2 = nn.Parameter(torch.zeros(1, 1, embed_dims[1]))
        self.cls_token3 = nn.Parameter(torch.zeros(1, 1, embed_dims[2]))
        self.cls_token4 = nn.Parameter(torch.zeros(1, 1, embed_dims[3]))

        # Convolutional position encodings.
        self.cpe1 = ConvPosEnc(dim=embed_dims[0], k=3)
        self.cpe2 = ConvPosEnc(dim=embed_dims[1], k=3)
        self.cpe3 = ConvPosEnc(dim=embed_dims[2], k=3)
        self.cpe4 = ConvPosEnc(dim=embed_dims[3], k=3)

        # Convolutional relative position encodings.
        self.crpe1 = ConvRelPosEnc(head_chs=embed_dims[0] // num_heads, num_heads=num_heads, window=crpe_window)
        self.crpe2 = ConvRelPosEnc(head_chs=embed_dims[1] // num_heads, num_heads=num_heads, window=crpe_window)
        self.crpe3 = ConvRelPosEnc(head_chs=embed_dims[2] // num_heads, num_heads=num_heads, window=crpe_window)
        self.crpe4 = ConvRelPosEnc(head_chs=embed_dims[3] // num_heads, num_heads=num_heads, window=crpe_window)

        # Disable stochastic depth.
        dpr = drop_path_rate
        assert dpr == 0.0
        skwargs = dict(
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            proj_drop=proj_drop_rate,
            attn_drop=attn_drop_rate,
            drop_path=dpr,
            norm_layer=norm_layer,
        )

        # Serial blocks 1.
        self.serial_blocks1 = nn.ModuleList([
            SerialBlock(
                dim=embed_dims[0],
                mlp_ratio=mlp_ratios[0],
                shared_cpe=self.cpe1,
                shared_crpe=self.crpe1,
                **skwargs,
            )
            for _ in range(serial_depths[0])]
        )

        # Serial blocks 2.
        self.serial_blocks2 = nn.ModuleList([
            SerialBlock(
                dim=embed_dims[1],
                mlp_ratio=mlp_ratios[1],
                shared_cpe=self.cpe2,
                shared_crpe=self.crpe2,
                **skwargs,
            )
            for _ in range(serial_depths[1])]
        )

        # Serial blocks 3.
        self.serial_blocks3 = nn.ModuleList([
            SerialBlock(
                dim=embed_dims[2],
                mlp_ratio=mlp_ratios[2],
                shared_cpe=self.cpe3,
                shared_crpe=self.crpe3,
                **skwargs,
            )
            for _ in range(serial_depths[2])]
        )

        # Serial blocks 4.
        self.serial_blocks4 = nn.ModuleList([
            SerialBlock(
                dim=embed_dims[3],
                mlp_ratio=mlp_ratios[3],
                shared_cpe=self.cpe4,
                shared_crpe=self.crpe4,
                **skwargs,
            )
            for _ in range(serial_depths[3])]
        )

        # Parallel blocks.
        self.parallel_depth = parallel_depth
        if self.parallel_depth > 0:
            self.parallel_blocks = nn.ModuleList([
                ParallelBlock(
                    dims=embed_dims,
                    mlp_ratios=mlp_ratios,
                    shared_crpes=(self.crpe1, self.crpe2, self.crpe3, self.crpe4),
                    **skwargs,
                )
                for _ in range(parallel_depth)]
            )
        else:
            self.parallel_blocks = None

        # Classification head(s).
        if not self.return_interm_layers:
            if self.parallel_blocks is not None:
                self.norm2 = norm_layer(embed_dims[1])
                self.norm3 = norm_layer(embed_dims[2])
            else:
                self.norm2 = self.norm3 = None
            self.norm4 = norm_layer(embed_dims[3])

            if self.parallel_depth > 0:
                # CoaT series: Aggregate features of last three scales for classification.
                assert embed_dims[1] == embed_dims[2] == embed_dims[3]
                self.aggregate = torch.nn.Conv1d(in_channels=3, out_channels=1, kernel_size=1)
                self.head_drop = nn.Dropout(drop_rate)
                self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
            else:
                # CoaT-Lite series: Use feature of last scale for classification.
                self.aggregate = None
                self.head_drop = nn.Dropout(drop_rate)
                self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()

        # Initialize weights.
        trunc_normal_(self.cls_token1, std=.02)
        trunc_normal_(self.cls_token2, std=.02)
        trunc_normal_(self.cls_token3, std=.02)
        trunc_normal_(self.cls_token4, std=.02)
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'cls_token1', 'cls_token2', 'cls_token3', 'cls_token4'}

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        assert not enable, 'gradient checkpointing not supported'

    @torch.jit.ignore
    def group_matcher(self, coarse=False):
        matcher = dict(
            stem1=r'^cls_token1|patch_embed1|crpe1|cpe1',
            serial_blocks1=r'^serial_blocks1\.(\d+)',
            stem2=r'^cls_token2|patch_embed2|crpe2|cpe2',
            serial_blocks2=r'^serial_blocks2\.(\d+)',
            stem3=r'^cls_token3|patch_embed3|crpe3|cpe3',
            serial_blocks3=r'^serial_blocks3\.(\d+)',
            stem4=r'^cls_token4|patch_embed4|crpe4|cpe4',
            serial_blocks4=r'^serial_blocks4\.(\d+)',
            parallel_blocks=[  # FIXME (partially?) overlap parallel w/ serial blocks??
                (r'^parallel_blocks\.(\d+)', None),
                (r'^norm|aggregate', (99999,)),
            ]
        )
        return matcher

    @torch.jit.ignore
    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes, global_pool=None):
        self.num_classes = num_classes
        if global_pool is not None:
            assert global_pool in ('token', 'avg')
            self.global_pool = global_pool
        self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()

    def forward_features(self, x0):
        B = x0.shape[0]

        # Serial blocks 1.
        x1 = self.patch_embed1(x0)
        H1, W1 = self.patch_embed1.grid_size
        x1 = insert_cls(x1, self.cls_token1)
        for blk in self.serial_blocks1:
            x1 = blk(x1, size=(H1, W1))
        x1_nocls = remove_cls(x1).reshape(B, H1, W1, -1).permute(0, 3, 1, 2).contiguous()
        
        # Serial blocks 2.
        x2 = self.patch_embed2(x1_nocls)
        H2, W2 = self.patch_embed2.grid_size
        x2 = insert_cls(x2, self.cls_token2)
        for blk in self.serial_blocks2:
            x2 = blk(x2, size=(H2, W2))
        x2_nocls = remove_cls(x2).reshape(B, H2, W2, -1).permute(0, 3, 1, 2).contiguous()

        # Serial blocks 3.
        x3 = self.patch_embed3(x2_nocls)
        H3, W3 = self.patch_embed3.grid_size
        x3 = insert_cls(x3, self.cls_token3)
        for blk in self.serial_blocks3:
            x3 = blk(x3, size=(H3, W3))
        x3_nocls = remove_cls(x3).reshape(B, H3, W3, -1).permute(0, 3, 1, 2).contiguous()

        # Serial blocks 4.
        x4 = self.patch_embed4(x3_nocls)
        H4, W4 = self.patch_embed4.grid_size
        x4 = insert_cls(x4, self.cls_token4)
        for blk in self.serial_blocks4:
            x4 = blk(x4, size=(H4, W4))
        x4_nocls = remove_cls(x4).reshape(B, H4, W4, -1).permute(0, 3, 1, 2).contiguous()

        # Only serial blocks: Early return.
        if self.parallel_blocks is None:
            if not torch.jit.is_scripting() and self.return_interm_layers:
                # Return intermediate features for down-stream tasks (e.g. Deformable DETR and Detectron2).
                feat_out = {}   
                if 'x1_nocls' in self.out_features:
                    feat_out['x1_nocls'] = x1_nocls
                if 'x2_nocls' in self.out_features:
                    feat_out['x2_nocls'] = x2_nocls
                if 'x3_nocls' in self.out_features:
                    feat_out['x3_nocls'] = x3_nocls
                if 'x4_nocls' in self.out_features:
                    feat_out['x4_nocls'] = x4_nocls
                return feat_out
            else:
                # Return features for classification.
                x4 = self.norm4(x4)
                return x4

        # Parallel blocks.
        for blk in self.parallel_blocks:
            x2, x3, x4 = self.cpe2(x2, (H2, W2)), self.cpe3(x3, (H3, W3)), self.cpe4(x4, (H4, W4))
            x1, x2, x3, x4 = blk(x1, x2, x3, x4, sizes=[(H1, W1), (H2, W2), (H3, W3), (H4, W4)])

        if not torch.jit.is_scripting() and self.return_interm_layers:
            # Return intermediate features for down-stream tasks (e.g. Deformable DETR and Detectron2).
            feat_out = {}   
            if 'x1_nocls' in self.out_features:
                x1_nocls = remove_cls(x1).reshape(B, H1, W1, -1).permute(0, 3, 1, 2).contiguous()
                feat_out['x1_nocls'] = x1_nocls
            if 'x2_nocls' in self.out_features:
                x2_nocls = remove_cls(x2).reshape(B, H2, W2, -1).permute(0, 3, 1, 2).contiguous()
                feat_out['x2_nocls'] = x2_nocls
            if 'x3_nocls' in self.out_features:
                x3_nocls = remove_cls(x3).reshape(B, H3, W3, -1).permute(0, 3, 1, 2).contiguous()
                feat_out['x3_nocls'] = x3_nocls
            if 'x4_nocls' in self.out_features:
                x4_nocls = remove_cls(x4).reshape(B, H4, W4, -1).permute(0, 3, 1, 2).contiguous()
                feat_out['x4_nocls'] = x4_nocls
            return feat_out
        else:
            x2 = self.norm2(x2)
            x3 = self.norm3(x3)
            x4 = self.norm4(x4)
            return [x2, x3, x4]

    def forward_head(self, x_feat: Union[torch.Tensor, List[torch.Tensor]], pre_logits: bool = False):
        if isinstance(x_feat, list):
            assert self.aggregate is not None
            if self.global_pool == 'avg':
                x = torch.cat([xl[:, 1:].mean(dim=1, keepdim=True) for xl in x_feat], dim=1)  # [B, 3, C]
            else:
                x = torch.stack([xl[:, 0] for xl in x_feat], dim=1)  # [B, 3, C]
            x = self.aggregate(x).squeeze(dim=1)  # Shape: [B, C]
        else:
            x = x_feat[:, 1:].mean(dim=1) if self.global_pool == 'avg' else x_feat[:, 0]
        x = self.head_drop(x)
        return x if pre_logits else self.head(x)

    def forward(self, x) -> torch.Tensor:
        if not torch.jit.is_scripting() and self.return_interm_layers:
            # Return intermediate features (for down-stream tasks).
            return self.forward_features(x)
        else:
            # Return features for classification.
            x_feat = self.forward_features(x)
            x = self.forward_head(x_feat)
            return x


def insert_cls(x, cls_token):
    """ Insert CLS token. """
    cls_tokens = cls_token.expand(x.shape[0], -1, -1)
    x = torch.cat((cls_tokens, x), dim=1)
    return x


def remove_cls(x):
    """ Remove CLS token. """
    return x[:, 1:, :]


def checkpoint_filter_fn(state_dict, model):
    out_dict = {}
    state_dict = state_dict.get('model', state_dict)
    for k, v in state_dict.items():
        # original model had unused norm layers, removing them requires filtering pretrained checkpoints
        if k.startswith('norm1') or \
                (k.startswith('norm2') and getattr(model, 'norm2', None) is None) or \
                (k.startswith('norm3') and getattr(model, 'norm3', None) is None) or \
                (k.startswith('norm4') and getattr(model, 'norm4', None) is None) or \
                (k.startswith('aggregate') and getattr(model, 'aggregate', None) is None) or \
                (k.startswith('head') and getattr(model, 'head', None) is None):
            continue
        out_dict[k] = v
    return out_dict


def _create_coat(variant, pretrained=False, default_cfg=None, **kwargs):
    if kwargs.get('features_only', None):
        raise RuntimeError('features_only not implemented for Vision Transformer models.')

    model = build_model_with_cfg(
        CoaT,
        variant,
        pretrained,
        pretrained_filter_fn=checkpoint_filter_fn,
        **kwargs,
    )
    return model


def _cfg_coat(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
        'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
        'first_conv': 'patch_embed1.proj', 'classifier': 'head',
        **kwargs
    }


default_cfgs = generate_default_cfgs({
    'coat_tiny.in1k': _cfg_coat(hf_hub_id='timm/'),
    'coat_mini.in1k': _cfg_coat(hf_hub_id='timm/'),
    'coat_small.in1k': _cfg_coat(hf_hub_id='timm/'),
    'coat_lite_tiny.in1k': _cfg_coat(hf_hub_id='timm/'),
    'coat_lite_mini.in1k': _cfg_coat(hf_hub_id='timm/'),
    'coat_lite_small.in1k': _cfg_coat(hf_hub_id='timm/'),
    'coat_lite_medium.in1k': _cfg_coat(hf_hub_id='timm/'),
    'coat_lite_medium_384.in1k': _cfg_coat(
        hf_hub_id='timm/',
        input_size=(3, 384, 384), crop_pct=1.0, crop_mode='squash',
    ),
})


@register_model
def coat_tiny(pretrained=False, **kwargs) -> CoaT:
    model_cfg = dict(
        patch_size=4, embed_dims=[152, 152, 152, 152], serial_depths=[2, 2, 2, 2], parallel_depth=6)
    model = _create_coat('coat_tiny', pretrained=pretrained, **dict(model_cfg, **kwargs))
    return model


@register_model
def coat_mini(pretrained=False, **kwargs) -> CoaT:
    model_cfg = dict(
        patch_size=4, embed_dims=[152, 216, 216, 216], serial_depths=[2, 2, 2, 2], parallel_depth=6)
    model = _create_coat('coat_mini', pretrained=pretrained, **dict(model_cfg, **kwargs))
    return model


@register_model
def coat_small(pretrained=False, **kwargs) -> CoaT:
    model_cfg = dict(
        patch_size=4, embed_dims=[152, 320, 320, 320], serial_depths=[2, 2, 2, 2], parallel_depth=6, **kwargs)
    model = _create_coat('coat_small', pretrained=pretrained, **dict(model_cfg, **kwargs))
    return model


@register_model
def coat_lite_tiny(pretrained=False, **kwargs) -> CoaT:
    model_cfg = dict(
        patch_size=4, embed_dims=[64, 128, 256, 320], serial_depths=[2, 2, 2, 2], mlp_ratios=[8, 8, 4, 4])
    model = _create_coat('coat_lite_tiny', pretrained=pretrained, **dict(model_cfg, **kwargs))
    return model


@register_model
def coat_lite_mini(pretrained=False, **kwargs) -> CoaT:
    model_cfg = dict(
        patch_size=4, embed_dims=[64, 128, 320, 512], serial_depths=[2, 2, 2, 2], mlp_ratios=[8, 8, 4, 4])
    model = _create_coat('coat_lite_mini', pretrained=pretrained, **dict(model_cfg, **kwargs))
    return model


@register_model
def coat_lite_small(pretrained=False, **kwargs) -> CoaT:
    model_cfg = dict(
        patch_size=4, embed_dims=[64, 128, 320, 512], serial_depths=[3, 4, 6, 3], mlp_ratios=[8, 8, 4, 4])
    model = _create_coat('coat_lite_small', pretrained=pretrained, **dict(model_cfg, **kwargs))
    return model


@register_model
def coat_lite_medium(pretrained=False, **kwargs) -> CoaT:
    model_cfg = dict(
        patch_size=4, embed_dims=[128, 256, 320, 512], serial_depths=[3, 6, 10, 8])
    model = _create_coat('coat_lite_medium', pretrained=pretrained, **dict(model_cfg, **kwargs))
    return model


@register_model
def coat_lite_medium_384(pretrained=False, **kwargs) -> CoaT:
    model_cfg = dict(
        img_size=384, patch_size=4, embed_dims=[128, 256, 320, 512], serial_depths=[3, 6, 10, 8])
    model = _create_coat('coat_lite_medium_384', pretrained=pretrained, **dict(model_cfg, **kwargs))
    return model