File size: 20,021 Bytes
786f6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
""" EfficientNet, MobileNetV3, etc Builder

Assembles EfficieNet and related network feature blocks from string definitions.
Handles stride, dilation calculations, and selects feature extraction points.

Hacked together by / Copyright 2019, Ross Wightman
"""

import logging
import math
import re
from copy import deepcopy
from functools import partial
from typing import Any, Dict, List

import torch.nn as nn

from ._efficientnet_blocks import *
from timm.layers import CondConv2d, get_condconv_initializer, get_act_layer, get_attn, make_divisible

__all__ = ["EfficientNetBuilder", "decode_arch_def", "efficientnet_init_weights",
           'resolve_bn_args', 'resolve_act_layer', 'round_channels', 'BN_MOMENTUM_TF_DEFAULT', 'BN_EPS_TF_DEFAULT']

_logger = logging.getLogger(__name__)


_DEBUG_BUILDER = False

# Defaults used for Google/Tensorflow training of mobile networks /w RMSprop as per
# papers and TF reference implementations. PT momentum equiv for TF decay is (1 - TF decay)
# NOTE: momentum varies btw .99 and .9997 depending on source
# .99 in official TF TPU impl
# .9997 (/w .999 in search space) for paper
BN_MOMENTUM_TF_DEFAULT = 1 - 0.99
BN_EPS_TF_DEFAULT = 1e-3
_BN_ARGS_TF = dict(momentum=BN_MOMENTUM_TF_DEFAULT, eps=BN_EPS_TF_DEFAULT)

BlockArgs = List[List[Dict[str, Any]]]


def get_bn_args_tf():
    return _BN_ARGS_TF.copy()


def resolve_bn_args(kwargs):
    bn_args = {}
    bn_momentum = kwargs.pop('bn_momentum', None)
    if bn_momentum is not None:
        bn_args['momentum'] = bn_momentum
    bn_eps = kwargs.pop('bn_eps', None)
    if bn_eps is not None:
        bn_args['eps'] = bn_eps
    return bn_args


def resolve_act_layer(kwargs, default='relu'):
    return get_act_layer(kwargs.pop('act_layer', default))


def round_channels(channels, multiplier=1.0, divisor=8, channel_min=None, round_limit=0.9):
    """Round number of filters based on depth multiplier."""
    if not multiplier:
        return channels
    return make_divisible(channels * multiplier, divisor, channel_min, round_limit=round_limit)


def _log_info_if(msg, condition):
    if condition:
        _logger.info(msg)


def _parse_ksize(ss):
    if ss.isdigit():
        return int(ss)
    else:
        return [int(k) for k in ss.split('.')]


def _decode_block_str(block_str):
    """ Decode block definition string

    Gets a list of block arg (dicts) through a string notation of arguments.
    E.g. ir_r2_k3_s2_e1_i32_o16_se0.25_noskip

    All args can exist in any order with the exception of the leading string which
    is assumed to indicate the block type.

    leading string - block type (
      ir = InvertedResidual, ds = DepthwiseSep, dsa = DeptwhiseSep with pw act, cn = ConvBnAct)
    r - number of repeat blocks,
    k - kernel size,
    s - strides (1-9),
    e - expansion ratio,
    c - output channels,
    se - squeeze/excitation ratio
    n - activation fn ('re', 'r6', 'hs', or 'sw')
    Args:
        block_str: a string representation of block arguments.
    Returns:
        A list of block args (dicts)
    Raises:
        ValueError: if the string def not properly specified (TODO)
    """
    assert isinstance(block_str, str)
    ops = block_str.split('_')
    block_type = ops[0]  # take the block type off the front
    ops = ops[1:]
    options = {}
    skip = None
    for op in ops:
        # string options being checked on individual basis, combine if they grow
        if op == 'noskip':
            skip = False  # force no skip connection
        elif op == 'skip':
            skip = True  # force a skip connection
        elif op.startswith('n'):
            # activation fn
            key = op[0]
            v = op[1:]
            if v == 're':
                value = get_act_layer('relu')
            elif v == 'r6':
                value = get_act_layer('relu6')
            elif v == 'hs':
                value = get_act_layer('hard_swish')
            elif v == 'sw':
                value = get_act_layer('swish')  # aka SiLU
            elif v == 'mi':
                value = get_act_layer('mish')
            else:
                continue
            options[key] = value
        else:
            # all numeric options
            splits = re.split(r'(\d.*)', op)
            if len(splits) >= 2:
                key, value = splits[:2]
                options[key] = value

    # if act_layer is None, the model default (passed to model init) will be used
    act_layer = options['n'] if 'n' in options else None
    exp_kernel_size = _parse_ksize(options['a']) if 'a' in options else 1
    pw_kernel_size = _parse_ksize(options['p']) if 'p' in options else 1
    force_in_chs = int(options['fc']) if 'fc' in options else 0  # FIXME hack to deal with in_chs issue in TPU def
    num_repeat = int(options['r'])

    # each type of block has different valid arguments, fill accordingly
    block_args = dict(
        block_type=block_type,
        out_chs=int(options['c']),
        stride=int(options['s']),
        act_layer=act_layer,
    )
    if block_type == 'ir':
        block_args.update(dict(
            dw_kernel_size=_parse_ksize(options['k']),
            exp_kernel_size=exp_kernel_size,
            pw_kernel_size=pw_kernel_size,
            exp_ratio=float(options['e']),
            se_ratio=float(options['se']) if 'se' in options else 0.,
            noskip=skip is False,
        ))
        if 'cc' in options:
            block_args['num_experts'] = int(options['cc'])
    elif block_type == 'ds' or block_type == 'dsa':
        block_args.update(dict(
            dw_kernel_size=_parse_ksize(options['k']),
            pw_kernel_size=pw_kernel_size,
            se_ratio=float(options['se']) if 'se' in options else 0.,
            pw_act=block_type == 'dsa',
            noskip=block_type == 'dsa' or skip is False,
        ))
    elif block_type == 'er':
        block_args.update(dict(
            exp_kernel_size=_parse_ksize(options['k']),
            pw_kernel_size=pw_kernel_size,
            exp_ratio=float(options['e']),
            force_in_chs=force_in_chs,
            se_ratio=float(options['se']) if 'se' in options else 0.,
            noskip=skip is False,
        ))
    elif block_type == 'cn':
        block_args.update(dict(
            kernel_size=int(options['k']),
            skip=skip is True,
        ))
    else:
        assert False, 'Unknown block type (%s)' % block_type
    if 'gs' in options:
        block_args['group_size'] = options['gs']

    return block_args, num_repeat


def _scale_stage_depth(stack_args, repeats, depth_multiplier=1.0, depth_trunc='ceil'):
    """ Per-stage depth scaling
    Scales the block repeats in each stage. This depth scaling impl maintains
    compatibility with the EfficientNet scaling method, while allowing sensible
    scaling for other models that may have multiple block arg definitions in each stage.
    """

    # We scale the total repeat count for each stage, there may be multiple
    # block arg defs per stage so we need to sum.
    num_repeat = sum(repeats)
    if depth_trunc == 'round':
        # Truncating to int by rounding allows stages with few repeats to remain
        # proportionally smaller for longer. This is a good choice when stage definitions
        # include single repeat stages that we'd prefer to keep that way as long as possible
        num_repeat_scaled = max(1, round(num_repeat * depth_multiplier))
    else:
        # The default for EfficientNet truncates repeats to int via 'ceil'.
        # Any multiplier > 1.0 will result in an increased depth for every stage.
        num_repeat_scaled = int(math.ceil(num_repeat * depth_multiplier))

    # Proportionally distribute repeat count scaling to each block definition in the stage.
    # Allocation is done in reverse as it results in the first block being less likely to be scaled.
    # The first block makes less sense to repeat in most of the arch definitions.
    repeats_scaled = []
    for r in repeats[::-1]:
        rs = max(1, round((r / num_repeat * num_repeat_scaled)))
        repeats_scaled.append(rs)
        num_repeat -= r
        num_repeat_scaled -= rs
    repeats_scaled = repeats_scaled[::-1]

    # Apply the calculated scaling to each block arg in the stage
    sa_scaled = []
    for ba, rep in zip(stack_args, repeats_scaled):
        sa_scaled.extend([deepcopy(ba) for _ in range(rep)])
    return sa_scaled


def decode_arch_def(
        arch_def,
        depth_multiplier=1.0,
        depth_trunc='ceil',
        experts_multiplier=1,
        fix_first_last=False,
        group_size=None,
):
    """ Decode block architecture definition strings -> block kwargs

    Args:
        arch_def: architecture definition strings, list of list of strings
        depth_multiplier: network depth multiplier
        depth_trunc: networ depth truncation mode when applying multiplier
        experts_multiplier: CondConv experts multiplier
        fix_first_last: fix first and last block depths when multiplier is applied
        group_size: group size override for all blocks that weren't explicitly set in arch string

    Returns:
        list of list of block kwargs
    """
    arch_args = []
    if isinstance(depth_multiplier, tuple):
        assert len(depth_multiplier) == len(arch_def)
    else:
        depth_multiplier = (depth_multiplier,) * len(arch_def)
    for stack_idx, (block_strings, multiplier) in enumerate(zip(arch_def, depth_multiplier)):
        assert isinstance(block_strings, list)
        stack_args = []
        repeats = []
        for block_str in block_strings:
            assert isinstance(block_str, str)
            ba, rep = _decode_block_str(block_str)
            if ba.get('num_experts', 0) > 0 and experts_multiplier > 1:
                ba['num_experts'] *= experts_multiplier
            if group_size is not None:
                ba.setdefault('group_size', group_size)
            stack_args.append(ba)
            repeats.append(rep)
        if fix_first_last and (stack_idx == 0 or stack_idx == len(arch_def) - 1):
            arch_args.append(_scale_stage_depth(stack_args, repeats, 1.0, depth_trunc))
        else:
            arch_args.append(_scale_stage_depth(stack_args, repeats, multiplier, depth_trunc))
    return arch_args


class EfficientNetBuilder:
    """ Build Trunk Blocks

    This ended up being somewhat of a cross between
    https://github.com/tensorflow/tpu/blob/master/models/official/mnasnet/mnasnet_models.py
    and
    https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/maskrcnn_benchmark/modeling/backbone/fbnet_builder.py

    """
    def __init__(self, output_stride=32, pad_type='', round_chs_fn=round_channels, se_from_exp=False,
                 act_layer=None, norm_layer=None, se_layer=None, drop_path_rate=0., feature_location=''):
        self.output_stride = output_stride
        self.pad_type = pad_type
        self.round_chs_fn = round_chs_fn
        self.se_from_exp = se_from_exp  # calculate se channel reduction from expanded (mid) chs
        self.act_layer = act_layer
        self.norm_layer = norm_layer
        self.se_layer = get_attn(se_layer)
        try:
            self.se_layer(8, rd_ratio=1.0)  # test if attn layer accepts rd_ratio arg
            self.se_has_ratio = True
        except TypeError:
            self.se_has_ratio = False
        self.drop_path_rate = drop_path_rate
        if feature_location == 'depthwise':
            # old 'depthwise' mode renamed 'expansion' to match TF impl, old expansion mode didn't make sense
            _logger.warning("feature_location=='depthwise' is deprecated, using 'expansion'")
            feature_location = 'expansion'
        self.feature_location = feature_location
        assert feature_location in ('bottleneck', 'expansion', '')
        self.verbose = _DEBUG_BUILDER

        # state updated during build, consumed by model
        self.in_chs = None
        self.features = []

    def _make_block(self, ba, block_idx, block_count):
        drop_path_rate = self.drop_path_rate * block_idx / block_count
        bt = ba.pop('block_type')
        ba['in_chs'] = self.in_chs
        ba['out_chs'] = self.round_chs_fn(ba['out_chs'])
        if 'force_in_chs' in ba and ba['force_in_chs']:
            # NOTE this is a hack to work around mismatch in TF EdgeEffNet impl
            ba['force_in_chs'] = self.round_chs_fn(ba['force_in_chs'])
        ba['pad_type'] = self.pad_type
        # block act fn overrides the model default
        ba['act_layer'] = ba['act_layer'] if ba['act_layer'] is not None else self.act_layer
        assert ba['act_layer'] is not None
        ba['norm_layer'] = self.norm_layer
        ba['drop_path_rate'] = drop_path_rate
        if bt != 'cn':
            se_ratio = ba.pop('se_ratio')
            if se_ratio and self.se_layer is not None:
                if not self.se_from_exp:
                    # adjust se_ratio by expansion ratio if calculating se channels from block input
                    se_ratio /= ba.get('exp_ratio', 1.0)
                if self.se_has_ratio:
                    ba['se_layer'] = partial(self.se_layer, rd_ratio=se_ratio)
                else:
                    ba['se_layer'] = self.se_layer

        if bt == 'ir':
            _log_info_if('  InvertedResidual {}, Args: {}'.format(block_idx, str(ba)), self.verbose)
            block = CondConvResidual(**ba) if ba.get('num_experts', 0) else InvertedResidual(**ba)
        elif bt == 'ds' or bt == 'dsa':
            _log_info_if('  DepthwiseSeparable {}, Args: {}'.format(block_idx, str(ba)), self.verbose)
            block = DepthwiseSeparableConv(**ba)
        elif bt == 'er':
            _log_info_if('  EdgeResidual {}, Args: {}'.format(block_idx, str(ba)), self.verbose)
            block = EdgeResidual(**ba)
        elif bt == 'cn':
            _log_info_if('  ConvBnAct {}, Args: {}'.format(block_idx, str(ba)), self.verbose)
            block = ConvBnAct(**ba)
        else:
            assert False, 'Uknkown block type (%s) while building model.' % bt

        self.in_chs = ba['out_chs']  # update in_chs for arg of next block
        return block

    def __call__(self, in_chs, model_block_args):
        """ Build the blocks
        Args:
            in_chs: Number of input-channels passed to first block
            model_block_args: A list of lists, outer list defines stages, inner
                list contains strings defining block configuration(s)
        Return:
             List of block stacks (each stack wrapped in nn.Sequential)
        """
        _log_info_if('Building model trunk with %d stages...' % len(model_block_args), self.verbose)
        self.in_chs = in_chs
        total_block_count = sum([len(x) for x in model_block_args])
        total_block_idx = 0
        current_stride = 2
        current_dilation = 1
        stages = []
        if model_block_args[0][0]['stride'] > 1:
            # if the first block starts with a stride, we need to extract first level feat from stem
            feature_info = dict(module='bn1', num_chs=in_chs, stage=0, reduction=current_stride)
            self.features.append(feature_info)

        # outer list of block_args defines the stacks
        for stack_idx, stack_args in enumerate(model_block_args):
            last_stack = stack_idx + 1 == len(model_block_args)
            _log_info_if('Stack: {}'.format(stack_idx), self.verbose)
            assert isinstance(stack_args, list)

            blocks = []
            # each stack (stage of blocks) contains a list of block arguments
            for block_idx, block_args in enumerate(stack_args):
                last_block = block_idx + 1 == len(stack_args)
                _log_info_if(' Block: {}'.format(block_idx), self.verbose)

                assert block_args['stride'] in (1, 2)
                if block_idx >= 1:   # only the first block in any stack can have a stride > 1
                    block_args['stride'] = 1

                extract_features = False
                if last_block:
                    next_stack_idx = stack_idx + 1
                    extract_features = next_stack_idx >= len(model_block_args) or \
                        model_block_args[next_stack_idx][0]['stride'] > 1

                next_dilation = current_dilation
                if block_args['stride'] > 1:
                    next_output_stride = current_stride * block_args['stride']
                    if next_output_stride > self.output_stride:
                        next_dilation = current_dilation * block_args['stride']
                        block_args['stride'] = 1
                        _log_info_if('  Converting stride to dilation to maintain output_stride=={}'.format(
                            self.output_stride), self.verbose)
                    else:
                        current_stride = next_output_stride
                block_args['dilation'] = current_dilation
                if next_dilation != current_dilation:
                    current_dilation = next_dilation

                # create the block
                block = self._make_block(block_args, total_block_idx, total_block_count)
                blocks.append(block)

                # stash feature module name and channel info for model feature extraction
                if extract_features:
                    feature_info = dict(
                        stage=stack_idx + 1,
                        reduction=current_stride,
                        **block.feature_info(self.feature_location),
                    )
                    leaf_name = feature_info.get('module', '')
                    if leaf_name:
                        feature_info['module'] = '.'.join([f'blocks.{stack_idx}.{block_idx}', leaf_name])
                    else:
                        assert last_block
                        feature_info['module'] = f'blocks.{stack_idx}'
                    self.features.append(feature_info)

                total_block_idx += 1  # incr global block idx (across all stacks)
            stages.append(nn.Sequential(*blocks))
        return stages


def _init_weight_goog(m, n='', fix_group_fanout=True):
    """ Weight initialization as per Tensorflow official implementations.

    Args:
        m (nn.Module): module to init
        n (str): module name
        fix_group_fanout (bool): enable correct (matching Tensorflow TPU impl) fanout calculation w/ group convs

    Handles layers in EfficientNet, EfficientNet-CondConv, MixNet, MnasNet, MobileNetV3, etc:
    * https://github.com/tensorflow/tpu/blob/master/models/official/mnasnet/mnasnet_model.py
    * https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/efficientnet_model.py
    """
    if isinstance(m, CondConv2d):
        fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
        if fix_group_fanout:
            fan_out //= m.groups
        init_weight_fn = get_condconv_initializer(
            lambda w: nn.init.normal_(w, 0, math.sqrt(2.0 / fan_out)), m.num_experts, m.weight_shape)
        init_weight_fn(m.weight)
        if m.bias is not None:
            nn.init.zeros_(m.bias)
    elif isinstance(m, nn.Conv2d):
        fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
        if fix_group_fanout:
            fan_out //= m.groups
        nn.init.normal_(m.weight, 0, math.sqrt(2.0 / fan_out))
        if m.bias is not None:
            nn.init.zeros_(m.bias)
    elif isinstance(m, nn.BatchNorm2d):
        nn.init.ones_(m.weight)
        nn.init.zeros_(m.bias)
    elif isinstance(m, nn.Linear):
        fan_out = m.weight.size(0)  # fan-out
        fan_in = 0
        if 'routing_fn' in n:
            fan_in = m.weight.size(1)
        init_range = 1.0 / math.sqrt(fan_in + fan_out)
        nn.init.uniform_(m.weight, -init_range, init_range)
        nn.init.zeros_(m.bias)


def efficientnet_init_weights(model: nn.Module, init_fn=None):
    init_fn = init_fn or _init_weight_goog
    for n, m in model.named_modules():
        init_fn(m, n)