File size: 12,092 Bytes
786f6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
""" EfficientNet, MobileNetV3, etc Blocks

Hacked together by / Copyright 2019, Ross Wightman
"""

import torch
import torch.nn as nn
from torch.nn import functional as F

from timm.layers import create_conv2d, DropPath, make_divisible, create_act_layer, get_norm_act_layer

__all__ = [
    'SqueezeExcite', 'ConvBnAct', 'DepthwiseSeparableConv', 'InvertedResidual', 'CondConvResidual', 'EdgeResidual']


def num_groups(group_size, channels):
    if not group_size:  # 0 or None
        return 1  # normal conv with 1 group
    else:
        # NOTE group_size == 1 -> depthwise conv
        assert channels % group_size == 0
        return channels // group_size


class SqueezeExcite(nn.Module):
    """ Squeeze-and-Excitation w/ specific features for EfficientNet/MobileNet family

    Args:
        in_chs (int): input channels to layer
        rd_ratio (float): ratio of squeeze reduction
        act_layer (nn.Module): activation layer of containing block
        gate_layer (Callable): attention gate function
        force_act_layer (nn.Module): override block's activation fn if this is set/bound
        rd_round_fn (Callable): specify a fn to calculate rounding of reduced chs
    """

    def __init__(
            self, in_chs, rd_ratio=0.25, rd_channels=None, act_layer=nn.ReLU,
            gate_layer=nn.Sigmoid, force_act_layer=None, rd_round_fn=None):
        super(SqueezeExcite, self).__init__()
        if rd_channels is None:
            rd_round_fn = rd_round_fn or round
            rd_channels = rd_round_fn(in_chs * rd_ratio)
        act_layer = force_act_layer or act_layer
        self.conv_reduce = nn.Conv2d(in_chs, rd_channels, 1, bias=True)
        self.act1 = create_act_layer(act_layer, inplace=True)
        self.conv_expand = nn.Conv2d(rd_channels, in_chs, 1, bias=True)
        self.gate = create_act_layer(gate_layer)

    def forward(self, x):
        x_se = x.mean((2, 3), keepdim=True)
        x_se = self.conv_reduce(x_se)
        x_se = self.act1(x_se)
        x_se = self.conv_expand(x_se)
        return x * self.gate(x_se)


class ConvBnAct(nn.Module):
    """ Conv + Norm Layer + Activation w/ optional skip connection
    """
    def __init__(
            self, in_chs, out_chs, kernel_size, stride=1, dilation=1, group_size=0, pad_type='',
            skip=False, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, drop_path_rate=0.):
        super(ConvBnAct, self).__init__()
        norm_act_layer = get_norm_act_layer(norm_layer, act_layer)
        groups = num_groups(group_size, in_chs)
        self.has_skip = skip and stride == 1 and in_chs == out_chs

        self.conv = create_conv2d(
            in_chs, out_chs, kernel_size, stride=stride, dilation=dilation, groups=groups, padding=pad_type)
        self.bn1 = norm_act_layer(out_chs, inplace=True)
        self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity()

    def feature_info(self, location):
        if location == 'expansion':  # output of conv after act, same as block coutput
            return dict(module='bn1', hook_type='forward', num_chs=self.conv.out_channels)
        else:  # location == 'bottleneck', block output
            return dict(module='', num_chs=self.conv.out_channels)

    def forward(self, x):
        shortcut = x
        x = self.conv(x)
        x = self.bn1(x)
        if self.has_skip:
            x = self.drop_path(x) + shortcut
        return x


class DepthwiseSeparableConv(nn.Module):
    """ DepthwiseSeparable block
    Used for DS convs in MobileNet-V1 and in the place of IR blocks that have no expansion
    (factor of 1.0). This is an alternative to having a IR with an optional first pw conv.
    """
    def __init__(
            self, in_chs, out_chs, dw_kernel_size=3, stride=1, dilation=1, group_size=1, pad_type='',
            noskip=False, pw_kernel_size=1, pw_act=False, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d,
            se_layer=None, drop_path_rate=0.):
        super(DepthwiseSeparableConv, self).__init__()
        norm_act_layer = get_norm_act_layer(norm_layer, act_layer)
        groups = num_groups(group_size, in_chs)
        self.has_skip = (stride == 1 and in_chs == out_chs) and not noskip
        self.has_pw_act = pw_act  # activation after point-wise conv

        self.conv_dw = create_conv2d(
            in_chs, in_chs, dw_kernel_size, stride=stride, dilation=dilation, padding=pad_type, groups=groups)
        self.bn1 = norm_act_layer(in_chs, inplace=True)

        # Squeeze-and-excitation
        self.se = se_layer(in_chs, act_layer=act_layer) if se_layer else nn.Identity()

        self.conv_pw = create_conv2d(in_chs, out_chs, pw_kernel_size, padding=pad_type)
        self.bn2 = norm_act_layer(out_chs, inplace=True, apply_act=self.has_pw_act)
        self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity()

    def feature_info(self, location):
        if location == 'expansion':  # after SE, input to PW
            return dict(module='conv_pw', hook_type='forward_pre', num_chs=self.conv_pw.in_channels)
        else:  # location == 'bottleneck', block output
            return dict(module='', num_chs=self.conv_pw.out_channels)

    def forward(self, x):
        shortcut = x
        x = self.conv_dw(x)
        x = self.bn1(x)
        x = self.se(x)
        x = self.conv_pw(x)
        x = self.bn2(x)
        if self.has_skip:
            x = self.drop_path(x) + shortcut
        return x


class InvertedResidual(nn.Module):
    """ Inverted residual block w/ optional SE

    Originally used in MobileNet-V2 - https://arxiv.org/abs/1801.04381v4, this layer is often
    referred to as 'MBConv' for (Mobile inverted bottleneck conv) and is also used in
      * MNasNet - https://arxiv.org/abs/1807.11626
      * EfficientNet - https://arxiv.org/abs/1905.11946
      * MobileNet-V3 - https://arxiv.org/abs/1905.02244
    """

    def __init__(
            self, in_chs, out_chs, dw_kernel_size=3, stride=1, dilation=1, group_size=1, pad_type='',
            noskip=False, exp_ratio=1.0, exp_kernel_size=1, pw_kernel_size=1, act_layer=nn.ReLU,
            norm_layer=nn.BatchNorm2d, se_layer=None, conv_kwargs=None, drop_path_rate=0.):
        super(InvertedResidual, self).__init__()
        norm_act_layer = get_norm_act_layer(norm_layer, act_layer)
        conv_kwargs = conv_kwargs or {}
        mid_chs = make_divisible(in_chs * exp_ratio)
        groups = num_groups(group_size, mid_chs)
        self.has_skip = (in_chs == out_chs and stride == 1) and not noskip

        # Point-wise expansion
        self.conv_pw = create_conv2d(in_chs, mid_chs, exp_kernel_size, padding=pad_type, **conv_kwargs)
        self.bn1 = norm_act_layer(mid_chs, inplace=True)

        # Depth-wise convolution
        self.conv_dw = create_conv2d(
            mid_chs, mid_chs, dw_kernel_size, stride=stride, dilation=dilation,
            groups=groups, padding=pad_type, **conv_kwargs)
        self.bn2 = norm_act_layer(mid_chs, inplace=True)

        # Squeeze-and-excitation
        self.se = se_layer(mid_chs, act_layer=act_layer) if se_layer else nn.Identity()

        # Point-wise linear projection
        self.conv_pwl = create_conv2d(mid_chs, out_chs, pw_kernel_size, padding=pad_type, **conv_kwargs)
        self.bn3 = norm_act_layer(out_chs, apply_act=False)
        self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity()

    def feature_info(self, location):
        if location == 'expansion':  # after SE, input to PWL
            return dict(module='conv_pwl', hook_type='forward_pre', num_chs=self.conv_pwl.in_channels)
        else:  # location == 'bottleneck', block output
            return dict(module='', num_chs=self.conv_pwl.out_channels)

    def forward(self, x):
        shortcut = x
        x = self.conv_pw(x)
        x = self.bn1(x)
        x = self.conv_dw(x)
        x = self.bn2(x)
        x = self.se(x)
        x = self.conv_pwl(x)
        x = self.bn3(x)
        if self.has_skip:
            x = self.drop_path(x) + shortcut
        return x


class CondConvResidual(InvertedResidual):
    """ Inverted residual block w/ CondConv routing"""

    def __init__(
            self, in_chs, out_chs, dw_kernel_size=3, stride=1, dilation=1, group_size=1, pad_type='',
            noskip=False, exp_ratio=1.0, exp_kernel_size=1, pw_kernel_size=1, act_layer=nn.ReLU,
            norm_layer=nn.BatchNorm2d, se_layer=None, num_experts=0, drop_path_rate=0.):

        self.num_experts = num_experts
        conv_kwargs = dict(num_experts=self.num_experts)

        super(CondConvResidual, self).__init__(
            in_chs, out_chs, dw_kernel_size=dw_kernel_size, stride=stride, dilation=dilation, group_size=group_size,
            pad_type=pad_type, act_layer=act_layer, noskip=noskip, exp_ratio=exp_ratio, exp_kernel_size=exp_kernel_size,
            pw_kernel_size=pw_kernel_size, se_layer=se_layer, norm_layer=norm_layer, conv_kwargs=conv_kwargs,
            drop_path_rate=drop_path_rate)

        self.routing_fn = nn.Linear(in_chs, self.num_experts)

    def forward(self, x):
        shortcut = x
        pooled_inputs = F.adaptive_avg_pool2d(x, 1).flatten(1)  # CondConv routing
        routing_weights = torch.sigmoid(self.routing_fn(pooled_inputs))
        x = self.conv_pw(x, routing_weights)
        x = self.bn1(x)
        x = self.conv_dw(x, routing_weights)
        x = self.bn2(x)
        x = self.se(x)
        x = self.conv_pwl(x, routing_weights)
        x = self.bn3(x)
        if self.has_skip:
            x = self.drop_path(x) + shortcut
        return x


class EdgeResidual(nn.Module):
    """ Residual block with expansion convolution followed by pointwise-linear w/ stride

    Originally introduced in `EfficientNet-EdgeTPU: Creating Accelerator-Optimized Neural Networks with AutoML`
        - https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html

    This layer is also called FusedMBConv in the MobileDet, EfficientNet-X, and EfficientNet-V2 papers
      * MobileDet - https://arxiv.org/abs/2004.14525
      * EfficientNet-X - https://arxiv.org/abs/2102.05610
      * EfficientNet-V2 - https://arxiv.org/abs/2104.00298
    """

    def __init__(
            self, in_chs, out_chs, exp_kernel_size=3, stride=1, dilation=1, group_size=0, pad_type='',
            force_in_chs=0, noskip=False, exp_ratio=1.0, pw_kernel_size=1, act_layer=nn.ReLU,
            norm_layer=nn.BatchNorm2d, se_layer=None, drop_path_rate=0.):
        super(EdgeResidual, self).__init__()
        norm_act_layer = get_norm_act_layer(norm_layer, act_layer)
        if force_in_chs > 0:
            mid_chs = make_divisible(force_in_chs * exp_ratio)
        else:
            mid_chs = make_divisible(in_chs * exp_ratio)
        groups = num_groups(group_size, in_chs)
        self.has_skip = (in_chs == out_chs and stride == 1) and not noskip

        # Expansion convolution
        self.conv_exp = create_conv2d(
            in_chs, mid_chs, exp_kernel_size, stride=stride, dilation=dilation, groups=groups, padding=pad_type)
        self.bn1 = norm_act_layer(mid_chs, inplace=True)

        # Squeeze-and-excitation
        self.se = se_layer(mid_chs, act_layer=act_layer) if se_layer else nn.Identity()

        # Point-wise linear projection
        self.conv_pwl = create_conv2d(mid_chs, out_chs, pw_kernel_size, padding=pad_type)
        self.bn2 = norm_act_layer(out_chs, apply_act=False)
        self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity()

    def feature_info(self, location):
        if location == 'expansion':  # after SE, before PWL
            return dict(module='conv_pwl', hook_type='forward_pre', num_chs=self.conv_pwl.in_channels)
        else:  # location == 'bottleneck', block output
            return dict(module='', num_chs=self.conv_pwl.out_channels)

    def forward(self, x):
        shortcut = x
        x = self.conv_exp(x)
        x = self.bn1(x)
        x = self.se(x)
        x = self.conv_pwl(x)
        x = self.bn2(x)
        if self.has_skip:
            x = self.drop_path(x) + shortcut
        return x