File size: 19,370 Bytes
786f6a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 |
""" Relative position embedding modules and functions
Hacked together by / Copyright 2022 Ross Wightman
"""
import math
import os
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from .grid import ndgrid
from .interpolate import RegularGridInterpolator
from .mlp import Mlp
from .weight_init import trunc_normal_
_USE_SCIPY = int(os.environ.get('TIMM_USE_SCIPY_INTERP', 0)) > 0
def gen_relative_position_index(
q_size: Tuple[int, int],
k_size: Optional[Tuple[int, int]] = None,
class_token: bool = False,
) -> torch.Tensor:
# Adapted with significant modifications from Swin / BeiT codebases
# get pair-wise relative position index for each token inside the window
assert k_size is None, 'Different q & k sizes not currently supported' # FIXME
coords = torch.stack(ndgrid(torch.arange(q_size[0]), torch.arange(q_size[1]))).flatten(1) # 2, Wh, Ww
relative_coords = coords[:, :, None] - coords[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0) # Qh*Qw, Kh*Kw, 2
relative_coords[:, :, 0] += q_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += q_size[1] - 1
relative_coords[:, :, 0] *= 2 * q_size[1] - 1
num_relative_distance = (2 * q_size[0] - 1) * (2 * q_size[1] - 1)
# else:
# # FIXME different q vs k sizes is a WIP, need to better offset the two grids?
# q_coords = torch.stack(
# ndgrid(
# torch.arange(q_size[0]),
# torch.arange(q_size[1])
# )
# ).flatten(1) # 2, Wh, Ww
# k_coords = torch.stack(
# ndgrid(
# torch.arange(k_size[0]),
# torch.arange(k_size[1])
# )
# ).flatten(1)
# relative_coords = q_coords[:, :, None] - k_coords[:, None, :] # 2, Wh*Ww, Wh*Ww
# relative_coords = relative_coords.permute(1, 2, 0) # Qh*Qw, Kh*Kw, 2
# relative_coords[:, :, 0] += max(q_size[0], k_size[0]) - 1 # shift to start from 0
# relative_coords[:, :, 1] += max(q_size[1], k_size[1]) - 1
# relative_coords[:, :, 0] *= k_size[1] + q_size[1] - 1
# relative_position_index = relative_coords.sum(-1) # Qh*Qw, Kh*Kw
# num_relative_distance = (q_size[0] + k_size[0] - 1) * (q_size[1] + k_size[1] - 1) + 3
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
if class_token:
# handle cls to token & token 2 cls & cls to cls as per beit for rel pos bias
# NOTE not intended or tested with MLP log-coords
relative_position_index = F.pad(relative_position_index, [1, 0, 1, 0])
relative_position_index[0, 0:] = num_relative_distance
relative_position_index[0:, 0] = num_relative_distance + 1
relative_position_index[0, 0] = num_relative_distance + 2
return relative_position_index.contiguous()
def resize_rel_pos_bias_table_simple(
rel_pos_bias,
new_window_size: Tuple[int, int],
new_bias_shape: Tuple[int, ...],
):
dst_size = (new_window_size[0] * 2 - 1, new_window_size[1] * 2 - 1)
if rel_pos_bias.ndim == 3:
# TF maxvit style (num_heads, H, W) bias shape, no extra tokens currently supported
_, dst_h, dst_w = new_bias_shape
num_attn_heads, src_h, src_w = rel_pos_bias.shape
assert dst_h == dst_size[0] and dst_w == dst_size[1]
if src_h != dst_h or src_w != dst_w:
rel_pos_bias = torch.nn.functional.interpolate(
rel_pos_bias.unsqueeze(0),
size=dst_size,
mode="bicubic",
align_corners=False,
).squeeze(0)
else:
assert rel_pos_bias.ndim == 2
# (num_pos, num_heads) (aka flat) bias shape
dst_num_pos, _ = new_bias_shape
src_num_pos, num_attn_heads = rel_pos_bias.shape
num_extra_tokens = dst_num_pos - (dst_size[0] * dst_size[1])
src_size = int((src_num_pos - num_extra_tokens) ** 0.5)
src_size = (src_size, src_size) # FIXME could support non-equal src if argument passed
if src_size[0] != dst_size[0] or src_size[1] != dst_size[1]:
if num_extra_tokens:
extra_tokens = rel_pos_bias[-num_extra_tokens:, :]
rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :]
else:
extra_tokens = None
rel_pos_bias = torch.nn.functional.interpolate(
rel_pos_bias.transpose(1, 0).reshape((1, -1, src_size[0], src_size[1])),
size=dst_size,
mode="bicubic",
align_corners=False,
).view(-1, dst_num_pos - num_extra_tokens).transpose(0, 1)
if extra_tokens is not None:
rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0)
return rel_pos_bias
def resize_rel_pos_bias_table_levit(
position_bias_table,
new_size,
interpolation: str = 'bicubic',
antialias: bool = True,
):
"""
Resample relative position bias table suggested in LeVit
Adapted from: https://github.com/microsoft/Cream/blob/main/TinyViT/utils.py
"""
L1, nH1 = position_bias_table.size()
L2, nH2 = new_size
assert nH1 == nH2
if L1 != L2:
orig_dtype = position_bias_table.dtype
position_bias_table = position_bias_table.float()
# bicubic interpolate relative_position_bias_table if not match
S1 = int(L1 ** 0.5)
S2 = int(L2 ** 0.5)
relative_position_bias_table_resized = F.interpolate(
position_bias_table.permute(1, 0).view(1, nH1, S1, S1),
size=(S2, S2),
mode=interpolation,
antialias=antialias)
relative_position_bias_table_resized = \
relative_position_bias_table_resized.view(nH2, L2).permute(1, 0)
relative_position_bias_table_resized.to(orig_dtype)
return relative_position_bias_table_resized
else:
return position_bias_table
def resize_rel_pos_bias_table(
rel_pos_bias,
new_window_size: Tuple[int, int],
new_bias_shape: Tuple[int, ...],
):
""" Resize relative position bias table using more advanced interpolation.
Modified from code in Microsoft Unilm (https://github.com/microsoft/unilm) repo (BeiT, BeiT-v2, etc).
https://github.com/microsoft/unilm/blob/5255d52de86dad642810f5849dd357769346c1d7/beit/run_class_finetuning.py#L351
Args:
rel_pos_bias:
new_window_size:
new_bias_shape:
Returns:
"""
if _USE_SCIPY:
from scipy import interpolate
dst_size = (new_window_size[0] * 2 - 1, new_window_size[1] * 2 - 1)
if rel_pos_bias.ndim == 3:
# TF maxvit style (num_heads, H, W) bias shape, no extra tokens currently supported
num_extra_tokens = 0
_, dst_h, dst_w = new_bias_shape
assert dst_h == dst_size[0] and dst_w == dst_size[1]
num_attn_heads, src_h, src_w = rel_pos_bias.shape
src_size = (src_h, src_w)
has_flat_shape = False
else:
assert rel_pos_bias.ndim == 2
# (num_pos, num_heads) (aka flat) bias shape
dst_num_pos, _ = new_bias_shape
src_num_pos, num_attn_heads = rel_pos_bias.shape
num_extra_tokens = dst_num_pos - (dst_size[0] * dst_size[1])
src_size = int((src_num_pos - num_extra_tokens) ** 0.5)
src_size = (src_size, src_size)
has_flat_shape = True
if src_size[0] != dst_size[0] or src_size[1] != dst_size[1]:
# print("Interpolating position from %dx%d to %dx%d" % (src_size[0], src_size[1], dst_size[0], dst_size[1]))
if num_extra_tokens:
extra_tokens = rel_pos_bias[-num_extra_tokens:, :]
rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :]
else:
extra_tokens = None
def geometric_progression(a, r, n):
return a * (1.0 - r ** n) / (1.0 - r)
def _calc(src, dst):
left, right = 1.01, 1.5
while right - left > 1e-6:
q = (left + right) / 2.0
gp = geometric_progression(1, q, src // 2)
if gp > dst // 2:
right = q
else:
left = q
dis = []
cur = 1
for i in range(src // 2):
dis.append(cur)
cur += q ** (i + 1)
r_ids = [-_ for _ in reversed(dis)]
return r_ids + [0] + dis
y = _calc(src_size[0], dst_size[0])
x = _calc(src_size[1], dst_size[1])
yx = [torch.tensor(y), torch.tensor(x)]
# print("Original positions = %s" % str(x))
ty = dst_size[0] // 2.0
tx = dst_size[1] // 2.0
dy = torch.arange(-ty, ty + 0.1, 1.0)
dx = torch.arange(-tx, tx + 0.1, 1.0)
dyx = ndgrid(dy, dx)
# print("Target positions = %s" % str(dx))
all_rel_pos_bias = []
for i in range(num_attn_heads):
if has_flat_shape:
z = rel_pos_bias[:, i].view(src_size[0], src_size[1]).float()
else:
z = rel_pos_bias[i, :, :].float()
if _USE_SCIPY:
# Original beit code uses scipy w/ cubic interpolation
f = interpolate.interp2d(x, y, z.numpy(), kind='cubic')
r = torch.Tensor(f(dx, dy)).contiguous().to(rel_pos_bias.device)
else:
# Without scipy dependency, I've found a reasonably simple impl
# that supports uneven spaced interpolation pts with 'linear' interp.
# Results are comparable to scipy for model accuracy in most cases.
f = RegularGridInterpolator(yx, z)
r = f(dyx).contiguous().to(rel_pos_bias.device)
if has_flat_shape:
r = r.view(-1, 1)
all_rel_pos_bias.append(r)
if has_flat_shape:
rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1)
else:
rel_pos_bias = torch.cat(all_rel_pos_bias, dim=0)
if extra_tokens is not None:
assert has_flat_shape
rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0)
return rel_pos_bias
class RelPosBias(nn.Module):
""" Relative Position Bias
Adapted from Swin-V1 relative position bias impl, modularized.
"""
def __init__(self, window_size, num_heads, prefix_tokens=0):
super().__init__()
assert prefix_tokens <= 1
self.window_size = window_size
self.window_area = window_size[0] * window_size[1]
self.bias_shape = (self.window_area + prefix_tokens,) * 2 + (num_heads,)
num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 * prefix_tokens
self.relative_position_bias_table = nn.Parameter(torch.zeros(num_relative_distance, num_heads))
self.register_buffer(
"relative_position_index",
gen_relative_position_index(self.window_size, class_token=prefix_tokens > 0).view(-1),
persistent=False,
)
self.init_weights()
def init_weights(self):
trunc_normal_(self.relative_position_bias_table, std=.02)
def get_bias(self) -> torch.Tensor:
relative_position_bias = self.relative_position_bias_table[self.relative_position_index]
# win_h * win_w, win_h * win_w, num_heads
relative_position_bias = relative_position_bias.view(self.bias_shape).permute(2, 0, 1)
return relative_position_bias.unsqueeze(0).contiguous()
def forward(self, attn, shared_rel_pos: Optional[torch.Tensor] = None):
return attn + self.get_bias()
def gen_relative_log_coords(
win_size: Tuple[int, int],
pretrained_win_size: Tuple[int, int] = (0, 0),
mode='swin',
):
assert mode in ('swin', 'cr')
# as per official swin-v2 impl, supporting timm specific 'cr' log coords as well
relative_coords_h = torch.arange(-(win_size[0] - 1), win_size[0]).to(torch.float32)
relative_coords_w = torch.arange(-(win_size[1] - 1), win_size[1]).to(torch.float32)
relative_coords_table = torch.stack(ndgrid(relative_coords_h, relative_coords_w))
relative_coords_table = relative_coords_table.permute(1, 2, 0).contiguous() # 2*Wh-1, 2*Ww-1, 2
if mode == 'swin':
if pretrained_win_size[0] > 0:
relative_coords_table[:, :, 0] /= (pretrained_win_size[0] - 1)
relative_coords_table[:, :, 1] /= (pretrained_win_size[1] - 1)
else:
relative_coords_table[:, :, 0] /= (win_size[0] - 1)
relative_coords_table[:, :, 1] /= (win_size[1] - 1)
relative_coords_table *= 8 # normalize to -8, 8
relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
1.0 + relative_coords_table.abs()) / math.log2(8)
else:
# mode == 'cr'
relative_coords_table = torch.sign(relative_coords_table) * torch.log(
1.0 + relative_coords_table.abs())
return relative_coords_table
class RelPosMlp(nn.Module):
""" Log-Coordinate Relative Position MLP
Based on ideas presented in Swin-V2 paper (https://arxiv.org/abs/2111.09883)
This impl covers the 'swin' implementation as well as two timm specific modes ('cr', and 'rw')
"""
def __init__(
self,
window_size,
num_heads=8,
hidden_dim=128,
prefix_tokens=0,
mode='cr',
pretrained_window_size=(0, 0)
):
super().__init__()
self.window_size = window_size
self.window_area = self.window_size[0] * self.window_size[1]
self.prefix_tokens = prefix_tokens
self.num_heads = num_heads
self.bias_shape = (self.window_area,) * 2 + (num_heads,)
if mode == 'swin':
self.bias_act = nn.Sigmoid()
self.bias_gain = 16
mlp_bias = (True, False)
else:
self.bias_act = nn.Identity()
self.bias_gain = None
mlp_bias = True
self.mlp = Mlp(
2, # x, y
hidden_features=hidden_dim,
out_features=num_heads,
act_layer=nn.ReLU,
bias=mlp_bias,
drop=(0.125, 0.)
)
self.register_buffer(
"relative_position_index",
gen_relative_position_index(window_size).view(-1),
persistent=False)
# get relative_coords_table
self.register_buffer(
"rel_coords_log",
gen_relative_log_coords(window_size, pretrained_window_size, mode=mode),
persistent=False)
def get_bias(self) -> torch.Tensor:
relative_position_bias = self.mlp(self.rel_coords_log)
if self.relative_position_index is not None:
relative_position_bias = relative_position_bias.view(-1, self.num_heads)[self.relative_position_index]
relative_position_bias = relative_position_bias.view(self.bias_shape)
relative_position_bias = relative_position_bias.permute(2, 0, 1)
relative_position_bias = self.bias_act(relative_position_bias)
if self.bias_gain is not None:
relative_position_bias = self.bias_gain * relative_position_bias
if self.prefix_tokens:
relative_position_bias = F.pad(relative_position_bias, [self.prefix_tokens, 0, self.prefix_tokens, 0])
return relative_position_bias.unsqueeze(0).contiguous()
def forward(self, attn, shared_rel_pos: Optional[torch.Tensor] = None):
return attn + self.get_bias()
def generate_lookup_tensor(
length: int,
max_relative_position: Optional[int] = None,
):
"""Generate a one_hot lookup tensor to reindex embeddings along one dimension.
Args:
length: the length to reindex to.
max_relative_position: the maximum relative position to consider.
Relative position embeddings for distances above this threshold
are zeroed out.
Returns:
a lookup Tensor of size [length, length, vocab_size] that satisfies
ret[n,m,v] = 1{m - n + max_relative_position = v}.
"""
if max_relative_position is None:
max_relative_position = length - 1
# Return the cached lookup tensor, otherwise compute it and cache it.
vocab_size = 2 * max_relative_position + 1
ret = torch.zeros(length, length, vocab_size)
for i in range(length):
for x in range(length):
v = x - i + max_relative_position
if abs(x - i) > max_relative_position:
continue
ret[i, x, v] = 1
return ret
def reindex_2d_einsum_lookup(
relative_position_tensor,
height: int,
width: int,
height_lookup: torch.Tensor,
width_lookup: torch.Tensor,
) -> torch.Tensor:
"""Reindex 2d relative position bias with 2 independent einsum lookups.
Adapted from:
https://github.com/google-research/maxvit/blob/2e06a7f1f70c76e64cd3dabe5cd1b8c1a23c9fb7/maxvit/models/attention_utils.py
Args:
relative_position_tensor: tensor of shape
[..., vocab_height, vocab_width, ...].
height: height to reindex to.
width: width to reindex to.
height_lookup: one-hot height lookup
width_lookup: one-hot width lookup
Returns:
reindexed_tensor: a Tensor of shape
[..., height * width, height * width, ...]
"""
reindexed_tensor = torch.einsum('nhw,ixh->nixw', relative_position_tensor, height_lookup)
reindexed_tensor = torch.einsum('nixw,jyw->nijxy', reindexed_tensor, width_lookup)
area = height * width
return reindexed_tensor.reshape(relative_position_tensor.shape[0], area, area)
class RelPosBiasTf(nn.Module):
""" Relative Position Bias Impl (Compatible with Tensorflow MaxViT models)
Adapted from:
https://github.com/google-research/maxvit/blob/2e06a7f1f70c76e64cd3dabe5cd1b8c1a23c9fb7/maxvit/models/attention_utils.py
"""
def __init__(self, window_size, num_heads, prefix_tokens=0):
super().__init__()
assert prefix_tokens <= 1
self.window_size = window_size
self.window_area = window_size[0] * window_size[1]
self.num_heads = num_heads
vocab_height = 2 * window_size[0] - 1
vocab_width = 2 * window_size[1] - 1
self.bias_shape = (self.num_heads, vocab_height, vocab_width)
self.relative_position_bias_table = nn.Parameter(torch.zeros(self.bias_shape))
self.register_buffer('height_lookup', generate_lookup_tensor(window_size[0]), persistent=False)
self.register_buffer('width_lookup', generate_lookup_tensor(window_size[1]), persistent=False)
self.init_weights()
def init_weights(self):
nn.init.normal_(self.relative_position_bias_table, std=.02)
def get_bias(self) -> torch.Tensor:
# FIXME change to not use one-hot/einsum?
return reindex_2d_einsum_lookup(
self.relative_position_bias_table,
self.window_size[0],
self.window_size[1],
self.height_lookup,
self.width_lookup
)
def forward(self, attn, shared_rel_pos: Optional[torch.Tensor] = None):
return attn + self.get_bias()
|