File size: 19,370 Bytes
786f6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
""" Relative position embedding modules and functions

Hacked together by / Copyright 2022 Ross Wightman
"""
import math
import os
from typing import Optional, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F

from .grid import ndgrid
from .interpolate import RegularGridInterpolator
from .mlp import Mlp
from .weight_init import trunc_normal_

_USE_SCIPY = int(os.environ.get('TIMM_USE_SCIPY_INTERP', 0)) > 0


def gen_relative_position_index(
        q_size: Tuple[int, int],
        k_size: Optional[Tuple[int, int]] = None,
        class_token: bool = False,
) -> torch.Tensor:
    # Adapted with significant modifications from Swin / BeiT codebases
    # get pair-wise relative position index for each token inside the window
    assert k_size is None, 'Different q & k sizes not currently supported'  # FIXME

    coords = torch.stack(ndgrid(torch.arange(q_size[0]), torch.arange(q_size[1]))).flatten(1)  # 2, Wh, Ww
    relative_coords = coords[:, :, None] - coords[:, None, :]  # 2, Wh*Ww, Wh*Ww
    relative_coords = relative_coords.permute(1, 2, 0)  # Qh*Qw, Kh*Kw, 2
    relative_coords[:, :, 0] += q_size[0] - 1  # shift to start from 0
    relative_coords[:, :, 1] += q_size[1] - 1
    relative_coords[:, :, 0] *= 2 * q_size[1] - 1
    num_relative_distance = (2 * q_size[0] - 1) * (2 * q_size[1] - 1)

    # else:
    #     # FIXME different q vs k sizes is a WIP, need to better offset the two grids?
    #     q_coords = torch.stack(
    #         ndgrid(
    #             torch.arange(q_size[0]),
    #             torch.arange(q_size[1])
    #         )
    #     ).flatten(1)  # 2, Wh, Ww
    #     k_coords = torch.stack(
    #         ndgrid(
    #             torch.arange(k_size[0]),
    #             torch.arange(k_size[1])
    #         )
    #     ).flatten(1)
    #     relative_coords = q_coords[:, :, None] - k_coords[:, None, :]  # 2, Wh*Ww, Wh*Ww
    #     relative_coords = relative_coords.permute(1, 2, 0)  # Qh*Qw, Kh*Kw, 2
    #     relative_coords[:, :, 0] += max(q_size[0], k_size[0]) - 1  # shift to start from 0
    #     relative_coords[:, :, 1] += max(q_size[1], k_size[1]) - 1
    #     relative_coords[:, :, 0] *= k_size[1] + q_size[1] - 1
    #     relative_position_index = relative_coords.sum(-1)  # Qh*Qw, Kh*Kw
    #     num_relative_distance = (q_size[0] + k_size[0] - 1) * (q_size[1] + k_size[1] - 1) + 3

    relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww

    if class_token:
        # handle cls to token & token 2 cls & cls to cls as per beit for rel pos bias
        # NOTE not intended or tested with MLP log-coords
        relative_position_index = F.pad(relative_position_index, [1, 0, 1, 0])
        relative_position_index[0, 0:] = num_relative_distance
        relative_position_index[0:, 0] = num_relative_distance + 1
        relative_position_index[0, 0] = num_relative_distance + 2

    return relative_position_index.contiguous()


def resize_rel_pos_bias_table_simple(
        rel_pos_bias,
        new_window_size: Tuple[int, int],
        new_bias_shape: Tuple[int, ...],
):
    dst_size = (new_window_size[0] * 2 - 1, new_window_size[1] * 2 - 1)
    if rel_pos_bias.ndim == 3:
        # TF maxvit style (num_heads, H, W) bias shape, no extra tokens currently supported
        _, dst_h, dst_w = new_bias_shape
        num_attn_heads, src_h, src_w = rel_pos_bias.shape
        assert dst_h == dst_size[0] and dst_w == dst_size[1]
        if src_h != dst_h or src_w != dst_w:
            rel_pos_bias = torch.nn.functional.interpolate(
                rel_pos_bias.unsqueeze(0),
                size=dst_size,
                mode="bicubic",
                align_corners=False,
            ).squeeze(0)
    else:
        assert rel_pos_bias.ndim == 2
        # (num_pos, num_heads) (aka flat) bias shape
        dst_num_pos, _ = new_bias_shape
        src_num_pos, num_attn_heads = rel_pos_bias.shape
        num_extra_tokens = dst_num_pos - (dst_size[0] * dst_size[1])
        src_size = int((src_num_pos - num_extra_tokens) ** 0.5)
        src_size = (src_size, src_size)  # FIXME could support non-equal src if argument passed

        if src_size[0] != dst_size[0] or src_size[1] != dst_size[1]:
            if num_extra_tokens:
                extra_tokens = rel_pos_bias[-num_extra_tokens:, :]
                rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :]
            else:
                extra_tokens = None

            rel_pos_bias = torch.nn.functional.interpolate(
                rel_pos_bias.transpose(1, 0).reshape((1, -1, src_size[0], src_size[1])),
                size=dst_size,
                mode="bicubic",
                align_corners=False,
            ).view(-1, dst_num_pos - num_extra_tokens).transpose(0, 1)

            if extra_tokens is not None:
                rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0)

    return rel_pos_bias


def resize_rel_pos_bias_table_levit(
        position_bias_table,
        new_size,
        interpolation: str = 'bicubic',
        antialias: bool = True,
):
    """
    Resample relative position bias table suggested in LeVit
    Adapted from: https://github.com/microsoft/Cream/blob/main/TinyViT/utils.py
    """
    L1, nH1 = position_bias_table.size()
    L2, nH2 = new_size
    assert nH1 == nH2
    if L1 != L2:
        orig_dtype = position_bias_table.dtype
        position_bias_table = position_bias_table.float()
        # bicubic interpolate relative_position_bias_table if not match
        S1 = int(L1 ** 0.5)
        S2 = int(L2 ** 0.5)
        relative_position_bias_table_resized = F.interpolate(
            position_bias_table.permute(1, 0).view(1, nH1, S1, S1),
            size=(S2, S2),
            mode=interpolation,
            antialias=antialias)
        relative_position_bias_table_resized = \
            relative_position_bias_table_resized.view(nH2, L2).permute(1, 0)
        relative_position_bias_table_resized.to(orig_dtype)
        return relative_position_bias_table_resized
    else:
        return position_bias_table


def resize_rel_pos_bias_table(
        rel_pos_bias,
        new_window_size: Tuple[int, int],
        new_bias_shape: Tuple[int, ...],
):
    """ Resize relative position bias table using more advanced interpolation.

    Modified from code in Microsoft Unilm (https://github.com/microsoft/unilm) repo (BeiT, BeiT-v2, etc).

    https://github.com/microsoft/unilm/blob/5255d52de86dad642810f5849dd357769346c1d7/beit/run_class_finetuning.py#L351

    Args:
        rel_pos_bias:
        new_window_size:
        new_bias_shape:

    Returns:

    """
    if _USE_SCIPY:
        from scipy import interpolate

    dst_size = (new_window_size[0] * 2 - 1, new_window_size[1] * 2 - 1)
    if rel_pos_bias.ndim == 3:
        # TF maxvit style (num_heads, H, W) bias shape, no extra tokens currently supported
        num_extra_tokens = 0
        _, dst_h, dst_w = new_bias_shape
        assert dst_h == dst_size[0] and dst_w == dst_size[1]
        num_attn_heads, src_h, src_w = rel_pos_bias.shape
        src_size = (src_h, src_w)
        has_flat_shape = False
    else:
        assert rel_pos_bias.ndim == 2
        # (num_pos, num_heads) (aka flat) bias shape
        dst_num_pos, _ = new_bias_shape
        src_num_pos, num_attn_heads = rel_pos_bias.shape
        num_extra_tokens = dst_num_pos - (dst_size[0] * dst_size[1])
        src_size = int((src_num_pos - num_extra_tokens) ** 0.5)
        src_size = (src_size, src_size)
        has_flat_shape = True

    if src_size[0] != dst_size[0] or src_size[1] != dst_size[1]:
        # print("Interpolating position from %dx%d to %dx%d" % (src_size[0], src_size[1], dst_size[0], dst_size[1]))
        if num_extra_tokens:
            extra_tokens = rel_pos_bias[-num_extra_tokens:, :]
            rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :]
        else:
            extra_tokens = None

        def geometric_progression(a, r, n):
            return a * (1.0 - r ** n) / (1.0 - r)

        def _calc(src, dst):
            left, right = 1.01, 1.5
            while right - left > 1e-6:
                q = (left + right) / 2.0
                gp = geometric_progression(1, q, src // 2)
                if gp > dst // 2:
                    right = q
                else:
                    left = q

            dis = []
            cur = 1
            for i in range(src // 2):
                dis.append(cur)
                cur += q ** (i + 1)
            r_ids = [-_ for _ in reversed(dis)]
            return r_ids + [0] + dis

        y = _calc(src_size[0], dst_size[0])
        x = _calc(src_size[1], dst_size[1])
        yx = [torch.tensor(y), torch.tensor(x)]
        # print("Original positions = %s" % str(x))

        ty = dst_size[0] // 2.0
        tx = dst_size[1] // 2.0
        dy = torch.arange(-ty, ty + 0.1, 1.0)
        dx = torch.arange(-tx, tx + 0.1, 1.0)
        dyx = ndgrid(dy, dx)
        # print("Target positions = %s" % str(dx))

        all_rel_pos_bias = []
        for i in range(num_attn_heads):
            if has_flat_shape:
                z = rel_pos_bias[:, i].view(src_size[0], src_size[1]).float()
            else:
                z = rel_pos_bias[i, :, :].float()

            if _USE_SCIPY:
                # Original beit code uses scipy w/ cubic interpolation
                f = interpolate.interp2d(x, y, z.numpy(), kind='cubic')
                r = torch.Tensor(f(dx, dy)).contiguous().to(rel_pos_bias.device)
            else:
                # Without scipy dependency, I've found a reasonably simple impl
                # that supports uneven spaced interpolation pts with 'linear' interp.
                # Results are comparable to scipy for model accuracy in most cases.
                f = RegularGridInterpolator(yx, z)
                r = f(dyx).contiguous().to(rel_pos_bias.device)

            if has_flat_shape:
                r = r.view(-1, 1)
            all_rel_pos_bias.append(r)

        if has_flat_shape:
            rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1)
        else:
            rel_pos_bias = torch.cat(all_rel_pos_bias, dim=0)

        if extra_tokens is not None:
            assert has_flat_shape
            rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0)

    return rel_pos_bias


class RelPosBias(nn.Module):
    """ Relative Position Bias
    Adapted from Swin-V1 relative position bias impl, modularized.
    """

    def __init__(self, window_size, num_heads, prefix_tokens=0):
        super().__init__()
        assert prefix_tokens <= 1
        self.window_size = window_size
        self.window_area = window_size[0] * window_size[1]
        self.bias_shape = (self.window_area + prefix_tokens,) * 2 + (num_heads,)

        num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 * prefix_tokens
        self.relative_position_bias_table = nn.Parameter(torch.zeros(num_relative_distance, num_heads))
        self.register_buffer(
            "relative_position_index",
            gen_relative_position_index(self.window_size, class_token=prefix_tokens > 0).view(-1),
            persistent=False,
        )

        self.init_weights()

    def init_weights(self):
        trunc_normal_(self.relative_position_bias_table, std=.02)

    def get_bias(self) -> torch.Tensor:
        relative_position_bias = self.relative_position_bias_table[self.relative_position_index]
        # win_h * win_w, win_h * win_w, num_heads
        relative_position_bias = relative_position_bias.view(self.bias_shape).permute(2, 0, 1)
        return relative_position_bias.unsqueeze(0).contiguous()

    def forward(self, attn, shared_rel_pos: Optional[torch.Tensor] = None):
        return attn + self.get_bias()


def gen_relative_log_coords(
        win_size: Tuple[int, int],
        pretrained_win_size: Tuple[int, int] = (0, 0),
        mode='swin',
):
    assert mode in ('swin', 'cr')
    # as per official swin-v2 impl, supporting timm specific 'cr' log coords as well
    relative_coords_h = torch.arange(-(win_size[0] - 1), win_size[0]).to(torch.float32)
    relative_coords_w = torch.arange(-(win_size[1] - 1), win_size[1]).to(torch.float32)
    relative_coords_table = torch.stack(ndgrid(relative_coords_h, relative_coords_w))
    relative_coords_table = relative_coords_table.permute(1, 2, 0).contiguous()  # 2*Wh-1, 2*Ww-1, 2
    if mode == 'swin':
        if pretrained_win_size[0] > 0:
            relative_coords_table[:, :, 0] /= (pretrained_win_size[0] - 1)
            relative_coords_table[:, :, 1] /= (pretrained_win_size[1] - 1)
        else:
            relative_coords_table[:, :, 0] /= (win_size[0] - 1)
            relative_coords_table[:, :, 1] /= (win_size[1] - 1)
        relative_coords_table *= 8  # normalize to -8, 8
        relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
            1.0 + relative_coords_table.abs()) / math.log2(8)
    else:
        # mode == 'cr'
        relative_coords_table = torch.sign(relative_coords_table) * torch.log(
            1.0 + relative_coords_table.abs())

    return relative_coords_table


class RelPosMlp(nn.Module):
    """ Log-Coordinate Relative Position MLP
    Based on ideas presented in Swin-V2 paper (https://arxiv.org/abs/2111.09883)

    This impl covers the 'swin' implementation as well as two timm specific modes ('cr', and 'rw')
    """
    def __init__(
            self,
            window_size,
            num_heads=8,
            hidden_dim=128,
            prefix_tokens=0,
            mode='cr',
            pretrained_window_size=(0, 0)
    ):
        super().__init__()
        self.window_size = window_size
        self.window_area = self.window_size[0] * self.window_size[1]
        self.prefix_tokens = prefix_tokens
        self.num_heads = num_heads
        self.bias_shape = (self.window_area,) * 2 + (num_heads,)
        if mode == 'swin':
            self.bias_act = nn.Sigmoid()
            self.bias_gain = 16
            mlp_bias = (True, False)
        else:
            self.bias_act = nn.Identity()
            self.bias_gain = None
            mlp_bias = True

        self.mlp = Mlp(
            2,  # x, y
            hidden_features=hidden_dim,
            out_features=num_heads,
            act_layer=nn.ReLU,
            bias=mlp_bias,
            drop=(0.125, 0.)
        )

        self.register_buffer(
            "relative_position_index",
            gen_relative_position_index(window_size).view(-1),
            persistent=False)

        # get relative_coords_table
        self.register_buffer(
            "rel_coords_log",
            gen_relative_log_coords(window_size, pretrained_window_size, mode=mode),
            persistent=False)

    def get_bias(self) -> torch.Tensor:
        relative_position_bias = self.mlp(self.rel_coords_log)
        if self.relative_position_index is not None:
            relative_position_bias = relative_position_bias.view(-1, self.num_heads)[self.relative_position_index]
            relative_position_bias = relative_position_bias.view(self.bias_shape)
        relative_position_bias = relative_position_bias.permute(2, 0, 1)
        relative_position_bias = self.bias_act(relative_position_bias)
        if self.bias_gain is not None:
            relative_position_bias = self.bias_gain * relative_position_bias
        if self.prefix_tokens:
            relative_position_bias = F.pad(relative_position_bias, [self.prefix_tokens, 0, self.prefix_tokens, 0])
        return relative_position_bias.unsqueeze(0).contiguous()

    def forward(self, attn, shared_rel_pos: Optional[torch.Tensor] = None):
        return attn + self.get_bias()


def generate_lookup_tensor(
        length: int,
        max_relative_position: Optional[int] = None,
):
    """Generate a one_hot lookup tensor to reindex embeddings along one dimension.

    Args:
        length: the length to reindex to.
        max_relative_position: the maximum relative position to consider.
            Relative position embeddings for distances above this threshold
            are zeroed out.
    Returns:
        a lookup Tensor of size [length, length, vocab_size] that satisfies
            ret[n,m,v] = 1{m - n + max_relative_position = v}.
    """
    if max_relative_position is None:
        max_relative_position = length - 1
    # Return the cached lookup tensor, otherwise compute it and cache it.
    vocab_size = 2 * max_relative_position + 1
    ret = torch.zeros(length, length, vocab_size)
    for i in range(length):
        for x in range(length):
            v = x - i + max_relative_position
            if abs(x - i) > max_relative_position:
                continue
            ret[i, x, v] = 1
    return ret


def reindex_2d_einsum_lookup(
        relative_position_tensor,
        height: int,
        width: int,
        height_lookup: torch.Tensor,
        width_lookup: torch.Tensor,
) -> torch.Tensor:
    """Reindex 2d relative position bias with 2 independent einsum lookups.

    Adapted from:
     https://github.com/google-research/maxvit/blob/2e06a7f1f70c76e64cd3dabe5cd1b8c1a23c9fb7/maxvit/models/attention_utils.py

    Args:
        relative_position_tensor: tensor of shape
            [..., vocab_height, vocab_width, ...].
        height: height to reindex to.
        width: width to reindex to.
        height_lookup: one-hot height lookup
        width_lookup: one-hot width lookup
    Returns:
        reindexed_tensor: a Tensor of shape
            [..., height * width, height * width, ...]
    """
    reindexed_tensor = torch.einsum('nhw,ixh->nixw', relative_position_tensor, height_lookup)
    reindexed_tensor = torch.einsum('nixw,jyw->nijxy', reindexed_tensor, width_lookup)
    area = height * width
    return reindexed_tensor.reshape(relative_position_tensor.shape[0], area, area)


class RelPosBiasTf(nn.Module):
    """ Relative Position Bias Impl (Compatible with Tensorflow MaxViT models)
    Adapted from:
     https://github.com/google-research/maxvit/blob/2e06a7f1f70c76e64cd3dabe5cd1b8c1a23c9fb7/maxvit/models/attention_utils.py
    """
    def __init__(self, window_size, num_heads, prefix_tokens=0):
        super().__init__()
        assert prefix_tokens <= 1
        self.window_size = window_size
        self.window_area = window_size[0] * window_size[1]
        self.num_heads = num_heads

        vocab_height = 2 * window_size[0] - 1
        vocab_width = 2 * window_size[1] - 1
        self.bias_shape = (self.num_heads, vocab_height, vocab_width)
        self.relative_position_bias_table = nn.Parameter(torch.zeros(self.bias_shape))
        self.register_buffer('height_lookup', generate_lookup_tensor(window_size[0]), persistent=False)
        self.register_buffer('width_lookup', generate_lookup_tensor(window_size[1]), persistent=False)
        self.init_weights()

    def init_weights(self):
        nn.init.normal_(self.relative_position_bias_table, std=.02)

    def get_bias(self) -> torch.Tensor:
        # FIXME change to not use one-hot/einsum?
        return reindex_2d_einsum_lookup(
            self.relative_position_bias_table,
            self.window_size[0],
            self.window_size[1],
            self.height_lookup,
            self.width_lookup
        )

    def forward(self, attn, shared_rel_pos: Optional[torch.Tensor] = None):
        return attn + self.get_bias()