File size: 1,594 Bytes
786f6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
"""
BlurPool layer inspired by
 - Kornia's Max_BlurPool2d
 - Making Convolutional Networks Shift-Invariant Again :cite:`zhang2019shiftinvar`

Hacked together by Chris Ha and Ross Wightman
"""

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from .padding import get_padding


class BlurPool2d(nn.Module):
    r"""Creates a module that computes blurs and downsample a given feature map.
    See :cite:`zhang2019shiftinvar` for more details.
    Corresponds to the Downsample class, which does blurring and subsampling

    Args:
        channels = Number of input channels
        filt_size (int): binomial filter size for blurring. currently supports 3 (default) and 5.
        stride (int): downsampling filter stride

    Returns:
        torch.Tensor: the transformed tensor.
    """
    def __init__(self, channels, filt_size=3, stride=2) -> None:
        super(BlurPool2d, self).__init__()
        assert filt_size > 1
        self.channels = channels
        self.filt_size = filt_size
        self.stride = stride
        self.padding = [get_padding(filt_size, stride, dilation=1)] * 4
        coeffs = torch.tensor((np.poly1d((0.5, 0.5)) ** (self.filt_size - 1)).coeffs.astype(np.float32))
        blur_filter = (coeffs[:, None] * coeffs[None, :])[None, None, :, :].repeat(self.channels, 1, 1, 1)
        self.register_buffer('filt', blur_filter, persistent=False)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = F.pad(x, self.padding, 'reflect')
        return F.conv2d(x, self.filt, stride=self.stride, groups=self.channels)