File size: 7,731 Bytes
786f6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# ResNeXt

A **ResNeXt** repeats a [building block](https://paperswithcode.com/method/resnext-block) that aggregates a set of transformations with the same topology. Compared to a [ResNet](https://paperswithcode.com/method/resnet), it exposes a new dimension,  *cardinality* (the size of the set of transformations) \\( C \\), as an essential factor in addition to the dimensions of depth and width.

## How do I use this model on an image?

To load a pretrained model:

```py
>>> import timm
>>> model = timm.create_model('resnext101_32x8d', pretrained=True)
>>> model.eval()
```

To load and preprocess the image:

```py
>>> import urllib
>>> from PIL import Image
>>> from timm.data import resolve_data_config
>>> from timm.data.transforms_factory import create_transform

>>> config = resolve_data_config({}, model=model)
>>> transform = create_transform(**config)

>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
>>> urllib.request.urlretrieve(url, filename)
>>> img = Image.open(filename).convert('RGB')
>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension
```

To get the model predictions:

```py
>>> import torch
>>> with torch.no_grad():
...     out = model(tensor)
>>> probabilities = torch.nn.functional.softmax(out[0], dim=0)
>>> print(probabilities.shape)
>>> # prints: torch.Size([1000])
```

To get the top-5 predictions class names:

```py
>>> # Get imagenet class mappings
>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
>>> urllib.request.urlretrieve(url, filename)
>>> with open("imagenet_classes.txt", "r") as f:
...     categories = [s.strip() for s in f.readlines()]

>>> # Print top categories per image
>>> top5_prob, top5_catid = torch.topk(probabilities, 5)
>>> for i in range(top5_prob.size(0)):
...     print(categories[top5_catid[i]], top5_prob[i].item())
>>> # prints class names and probabilities like:
>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
```

Replace the model name with the variant you want to use, e.g. `resnext101_32x8d`. You can find the IDs in the model summaries at the top of this page.

To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use.

## How do I finetune this model?

You can finetune any of the pre-trained models just by changing the classifier (the last layer).

```py
>>> model = timm.create_model('resnext101_32x8d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
```
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.

## How do I train this model?

You can follow the [timm recipe scripts](../scripts) for training a new model afresh.

## Citation

```BibTeX
@article{DBLP:journals/corr/XieGDTH16,
  author    = {Saining Xie and
               Ross B. Girshick and
               Piotr Doll{\'{a}}r and
               Zhuowen Tu and
               Kaiming He},
  title     = {Aggregated Residual Transformations for Deep Neural Networks},
  journal   = {CoRR},
  volume    = {abs/1611.05431},
  year      = {2016},
  url       = {http://arxiv.org/abs/1611.05431},
  archivePrefix = {arXiv},
  eprint    = {1611.05431},
  timestamp = {Mon, 13 Aug 2018 16:45:58 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/XieGDTH16.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
```

<!--
Type: model-index
Collections:
- Name: ResNeXt
  Paper:
    Title: Aggregated Residual Transformations for Deep Neural Networks
    URL: https://paperswithcode.com/paper/aggregated-residual-transformations-for-deep
Models:
- Name: resnext101_32x8d
  In Collection: ResNeXt
  Metadata:
    FLOPs: 21180417024
    Parameters: 88790000
    File Size: 356082095
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Convolution
    - Global Average Pooling
    - Grouped Convolution
    - Max Pooling
    - ReLU
    - ResNeXt Block
    - Residual Connection
    - Softmax
    Tasks:
    - Image Classification
    Training Data:
    - ImageNet
    ID: resnext101_32x8d
    Crop Pct: '0.875'
    Image Size: '224'
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/resnet.py#L877
  Weights: https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 79.3%
      Top 5 Accuracy: 94.53%
- Name: resnext50_32x4d
  In Collection: ResNeXt
  Metadata:
    FLOPs: 5472648192
    Parameters: 25030000
    File Size: 100435887
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Convolution
    - Global Average Pooling
    - Grouped Convolution
    - Max Pooling
    - ReLU
    - ResNeXt Block
    - Residual Connection
    - Softmax
    Tasks:
    - Image Classification
    Training Data:
    - ImageNet
    ID: resnext50_32x4d
    Crop Pct: '0.875'
    Image Size: '224'
    Interpolation: bicubic
  Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/resnet.py#L851
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnext50_32x4d_ra-d733960d.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 79.79%
      Top 5 Accuracy: 94.61%
- Name: resnext50d_32x4d
  In Collection: ResNeXt
  Metadata:
    FLOPs: 5781119488
    Parameters: 25050000
    File Size: 100515304
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Convolution
    - Global Average Pooling
    - Grouped Convolution
    - Max Pooling
    - ReLU
    - ResNeXt Block
    - Residual Connection
    - Softmax
    Tasks:
    - Image Classification
    Training Data:
    - ImageNet
    ID: resnext50d_32x4d
    Crop Pct: '0.875'
    Image Size: '224'
    Interpolation: bicubic
  Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/resnet.py#L869
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnext50d_32x4d-103e99f8.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 79.67%
      Top 5 Accuracy: 94.87%
- Name: tv_resnext50_32x4d
  In Collection: ResNeXt
  Metadata:
    FLOPs: 5472648192
    Parameters: 25030000
    File Size: 100441675
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Convolution
    - Global Average Pooling
    - Grouped Convolution
    - Max Pooling
    - ReLU
    - ResNeXt Block
    - Residual Connection
    - Softmax
    Tasks:
    - Image Classification
    Training Techniques:
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    ID: tv_resnext50_32x4d
    LR: 0.1
    Epochs: 90
    Crop Pct: '0.875'
    LR Gamma: 0.1
    Momentum: 0.9
    Batch Size: 32
    Image Size: '224'
    LR Step Size: 30
    Weight Decay: 0.0001
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L842
  Weights: https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 77.61%
      Top 5 Accuracy: 93.68%
-->