File size: 10,029 Bytes
786f6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
# Res2Net

**Res2Net** is an image model that employs a variation on bottleneck residual blocks, [Res2Net Blocks](https://paperswithcode.com/method/res2net-block). The motivation is to be able to represent features at multiple scales. This is achieved through a novel building block for CNNs that constructs hierarchical residual-like connections within one single residual block. This represents multi-scale features at a granular level and increases the range of receptive fields for each network layer.

## How do I use this model on an image?

To load a pretrained model:

```py
>>> import timm
>>> model = timm.create_model('res2net101_26w_4s', pretrained=True)
>>> model.eval()
```

To load and preprocess the image:

```py 
>>> import urllib
>>> from PIL import Image
>>> from timm.data import resolve_data_config
>>> from timm.data.transforms_factory import create_transform

>>> config = resolve_data_config({}, model=model)
>>> transform = create_transform(**config)

>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
>>> urllib.request.urlretrieve(url, filename)
>>> img = Image.open(filename).convert('RGB')
>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension
```

To get the model predictions:

```py
>>> import torch
>>> with torch.no_grad():
...     out = model(tensor)
>>> probabilities = torch.nn.functional.softmax(out[0], dim=0)
>>> print(probabilities.shape)
>>> # prints: torch.Size([1000])
```

To get the top-5 predictions class names:

```py
>>> # Get imagenet class mappings
>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
>>> urllib.request.urlretrieve(url, filename) 
>>> with open("imagenet_classes.txt", "r") as f:
...     categories = [s.strip() for s in f.readlines()]

>>> # Print top categories per image
>>> top5_prob, top5_catid = torch.topk(probabilities, 5)
>>> for i in range(top5_prob.size(0)):
...     print(categories[top5_catid[i]], top5_prob[i].item())
>>> # prints class names and probabilities like:
>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
```

Replace the model name with the variant you want to use, e.g. `res2net101_26w_4s`. You can find the IDs in the model summaries at the top of this page.

To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use.

## How do I finetune this model?

You can finetune any of the pre-trained models just by changing the classifier (the last layer).

```py
>>> model = timm.create_model('res2net101_26w_4s', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
```
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.

## How do I train this model?

You can follow the [timm recipe scripts](../scripts) for training a new model afresh.

## Citation

```BibTeX
@article{Gao_2021,
   title={Res2Net: A New Multi-Scale Backbone Architecture},
   volume={43},
   ISSN={1939-3539},
   url={http://dx.doi.org/10.1109/TPAMI.2019.2938758},
   DOI={10.1109/tpami.2019.2938758},
   number={2},
   journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
   publisher={Institute of Electrical and Electronics Engineers (IEEE)},
   author={Gao, Shang-Hua and Cheng, Ming-Ming and Zhao, Kai and Zhang, Xin-Yu and Yang, Ming-Hsuan and Torr, Philip},
   year={2021},
   month={Feb},
   pages={652–662}
}
```

<!--
Type: model-index
Collections:
- Name: Res2Net
  Paper:
    Title: 'Res2Net: A New Multi-scale Backbone Architecture'
    URL: https://paperswithcode.com/paper/res2net-a-new-multi-scale-backbone
Models:
- Name: res2net101_26w_4s
  In Collection: Res2Net
  Metadata:
    FLOPs: 10415881200
    Parameters: 45210000
    File Size: 181456059
    Architecture:
    - Batch Normalization
    - Convolution
    - Global Average Pooling
    - ReLU
    - Res2Net Block
    Tasks:
    - Image Classification
    Training Techniques:
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 4x Titan Xp GPUs
    ID: res2net101_26w_4s
    LR: 0.1
    Epochs: 100
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 256
    Image Size: '224'
    Weight Decay: 0.0001
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/res2net.py#L152
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net101_26w_4s-02a759a1.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 79.19%
      Top 5 Accuracy: 94.43%
- Name: res2net50_14w_8s
  In Collection: Res2Net
  Metadata:
    FLOPs: 5403546768
    Parameters: 25060000
    File Size: 100638543
    Architecture:
    - Batch Normalization
    - Convolution
    - Global Average Pooling
    - ReLU
    - Res2Net Block
    Tasks:
    - Image Classification
    Training Techniques:
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 4x Titan Xp GPUs
    ID: res2net50_14w_8s
    LR: 0.1
    Epochs: 100
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 256
    Image Size: '224'
    Weight Decay: 0.0001
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/res2net.py#L196
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_14w_8s-6527dddc.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 78.14%
      Top 5 Accuracy: 93.86%
- Name: res2net50_26w_4s
  In Collection: Res2Net
  Metadata:
    FLOPs: 5499974064
    Parameters: 25700000
    File Size: 103110087
    Architecture:
    - Batch Normalization
    - Convolution
    - Global Average Pooling
    - ReLU
    - Res2Net Block
    Tasks:
    - Image Classification
    Training Techniques:
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 4x Titan Xp GPUs
    ID: res2net50_26w_4s
    LR: 0.1
    Epochs: 100
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 256
    Image Size: '224'
    Weight Decay: 0.0001
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/res2net.py#L141
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_26w_4s-06e79181.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 77.99%
      Top 5 Accuracy: 93.85%
- Name: res2net50_26w_6s
  In Collection: Res2Net
  Metadata:
    FLOPs: 8130156528
    Parameters: 37050000
    File Size: 148603239
    Architecture:
    - Batch Normalization
    - Convolution
    - Global Average Pooling
    - ReLU
    - Res2Net Block
    Tasks:
    - Image Classification
    Training Techniques:
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 4x Titan Xp GPUs
    ID: res2net50_26w_6s
    LR: 0.1
    Epochs: 100
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 256
    Image Size: '224'
    Weight Decay: 0.0001
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/res2net.py#L163
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_26w_6s-19041792.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 78.57%
      Top 5 Accuracy: 94.12%
- Name: res2net50_26w_8s
  In Collection: Res2Net
  Metadata:
    FLOPs: 10760338992
    Parameters: 48400000
    File Size: 194085165
    Architecture:
    - Batch Normalization
    - Convolution
    - Global Average Pooling
    - ReLU
    - Res2Net Block
    Tasks:
    - Image Classification
    Training Techniques:
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 4x Titan Xp GPUs
    ID: res2net50_26w_8s
    LR: 0.1
    Epochs: 100
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 256
    Image Size: '224'
    Weight Decay: 0.0001
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/res2net.py#L174
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_26w_8s-2c7c9f12.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 79.19%
      Top 5 Accuracy: 94.37%
- Name: res2net50_48w_2s
  In Collection: Res2Net
  Metadata:
    FLOPs: 5375291520
    Parameters: 25290000
    File Size: 101421406
    Architecture:
    - Batch Normalization
    - Convolution
    - Global Average Pooling
    - ReLU
    - Res2Net Block
    Tasks:
    - Image Classification
    Training Techniques:
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 4x Titan Xp GPUs
    ID: res2net50_48w_2s
    LR: 0.1
    Epochs: 100
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 256
    Image Size: '224'
    Weight Decay: 0.0001
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/res2net.py#L185
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_48w_2s-afed724a.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 77.53%
      Top 5 Accuracy: 93.56%
-->