File size: 8,705 Bytes
786f6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
# MobileNet v2

**MobileNetV2** is a convolutional neural network architecture that seeks to perform well on mobile devices. It is based on an [inverted residual structure](https://paperswithcode.com/method/inverted-residual-block) where the residual connections are between the bottleneck layers.  The intermediate expansion layer uses lightweight depthwise convolutions to filter features as a source of non-linearity. As a whole, the architecture of MobileNetV2 contains the initial fully convolution layer with 32 filters, followed by 19 residual bottleneck layers.

## How do I use this model on an image?

To load a pretrained model:

```py
>>> import timm
>>> model = timm.create_model('mobilenetv2_100', pretrained=True)
>>> model.eval()
```

To load and preprocess the image:

```py 
>>> import urllib
>>> from PIL import Image
>>> from timm.data import resolve_data_config
>>> from timm.data.transforms_factory import create_transform

>>> config = resolve_data_config({}, model=model)
>>> transform = create_transform(**config)

>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
>>> urllib.request.urlretrieve(url, filename)
>>> img = Image.open(filename).convert('RGB')
>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension
```

To get the model predictions:

```py
>>> import torch
>>> with torch.no_grad():
...     out = model(tensor)
>>> probabilities = torch.nn.functional.softmax(out[0], dim=0)
>>> print(probabilities.shape)
>>> # prints: torch.Size([1000])
```

To get the top-5 predictions class names:

```py
>>> # Get imagenet class mappings
>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
>>> urllib.request.urlretrieve(url, filename) 
>>> with open("imagenet_classes.txt", "r") as f:
...     categories = [s.strip() for s in f.readlines()]

>>> # Print top categories per image
>>> top5_prob, top5_catid = torch.topk(probabilities, 5)
>>> for i in range(top5_prob.size(0)):
...     print(categories[top5_catid[i]], top5_prob[i].item())
>>> # prints class names and probabilities like:
>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
```

Replace the model name with the variant you want to use, e.g. `mobilenetv2_100`. You can find the IDs in the model summaries at the top of this page.

To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use.

## How do I finetune this model?

You can finetune any of the pre-trained models just by changing the classifier (the last layer).

```py
>>> model = timm.create_model('mobilenetv2_100', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
```
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.

## How do I train this model?

You can follow the [timm recipe scripts](../scripts) for training a new model afresh.

## Citation

```BibTeX
@article{DBLP:journals/corr/abs-1801-04381,
  author    = {Mark Sandler and
               Andrew G. Howard and
               Menglong Zhu and
               Andrey Zhmoginov and
               Liang{-}Chieh Chen},
  title     = {Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification,
               Detection and Segmentation},
  journal   = {CoRR},
  volume    = {abs/1801.04381},
  year      = {2018},
  url       = {http://arxiv.org/abs/1801.04381},
  archivePrefix = {arXiv},
  eprint    = {1801.04381},
  timestamp = {Tue, 12 Jan 2021 15:30:06 +0100},
  biburl    = {https://dblp.org/rec/journals/corr/abs-1801-04381.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
```

<!--
Type: model-index
Collections:
- Name: MobileNet V2
  Paper:
    Title: 'MobileNetV2: Inverted Residuals and Linear Bottlenecks'
    URL: https://paperswithcode.com/paper/mobilenetv2-inverted-residuals-and-linear
Models:
- Name: mobilenetv2_100
  In Collection: MobileNet V2
  Metadata:
    FLOPs: 401920448
    Parameters: 3500000
    File Size: 14202571
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Convolution
    - Depthwise Separable Convolution
    - Dropout
    - Inverted Residual Block
    - Max Pooling
    - ReLU6
    - Residual Connection
    - Softmax
    Tasks:
    - Image Classification
    Training Techniques:
    - RMSProp
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 16x GPUs
    ID: mobilenetv2_100
    LR: 0.045
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 1536
    Image Size: '224'
    Weight Decay: 4.0e-05
    Interpolation: bicubic
    RMSProp Decay: 0.9
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L955
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_100_ra-b33bc2c4.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 72.95%
      Top 5 Accuracy: 91.0%
- Name: mobilenetv2_110d
  In Collection: MobileNet V2
  Metadata:
    FLOPs: 573958832
    Parameters: 4520000
    File Size: 18316431
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Convolution
    - Depthwise Separable Convolution
    - Dropout
    - Inverted Residual Block
    - Max Pooling
    - ReLU6
    - Residual Connection
    - Softmax
    Tasks:
    - Image Classification
    Training Techniques:
    - RMSProp
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 16x GPUs
    ID: mobilenetv2_110d
    LR: 0.045
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 1536
    Image Size: '224'
    Weight Decay: 4.0e-05
    Interpolation: bicubic
    RMSProp Decay: 0.9
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L969
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_110d_ra-77090ade.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 75.05%
      Top 5 Accuracy: 92.19%
- Name: mobilenetv2_120d
  In Collection: MobileNet V2
  Metadata:
    FLOPs: 888510048
    Parameters: 5830000
    File Size: 23651121
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Convolution
    - Depthwise Separable Convolution
    - Dropout
    - Inverted Residual Block
    - Max Pooling
    - ReLU6
    - Residual Connection
    - Softmax
    Tasks:
    - Image Classification
    Training Techniques:
    - RMSProp
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 16x GPUs
    ID: mobilenetv2_120d
    LR: 0.045
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 1536
    Image Size: '224'
    Weight Decay: 4.0e-05
    Interpolation: bicubic
    RMSProp Decay: 0.9
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L977
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_120d_ra-5987e2ed.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 77.28%
      Top 5 Accuracy: 93.51%
- Name: mobilenetv2_140
  In Collection: MobileNet V2
  Metadata:
    FLOPs: 770196784
    Parameters: 6110000
    File Size: 24673555
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Convolution
    - Depthwise Separable Convolution
    - Dropout
    - Inverted Residual Block
    - Max Pooling
    - ReLU6
    - Residual Connection
    - Softmax
    Tasks:
    - Image Classification
    Training Techniques:
    - RMSProp
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 16x GPUs
    ID: mobilenetv2_140
    LR: 0.045
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 1536
    Image Size: '224'
    Weight Decay: 4.0e-05
    Interpolation: bicubic
    RMSProp Decay: 0.9
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L962
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_140_ra-21a4e913.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 76.51%
      Top 5 Accuracy: 93.0%
-->