File size: 2,195 Bytes
786f6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# Getting Started

## Welcome

Welcome to the `timm` documentation, a lean set of docs that covers the basics of `timm`.

For a more comprehensive set of docs (currently under development), please visit [timmdocs](http://timm.fast.ai) by [Aman Arora](https://github.com/amaarora).

## Install

The library can be installed with pip:

```
pip install timm
```

I update the PyPi (pip) packages when I'm confident there are no significant model regressions from previous releases. If you want to pip install the bleeding edge from GitHub, use:
```
pip install git+https://github.com/rwightman/pytorch-image-models.git
```

!!! info "Conda Environment"
    All development and testing has been done in Conda Python 3 environments on Linux x86-64 systems, specifically 3.7, 3.8, 3.9, 3.10
    
    Little to no care has been taken to be Python 2.x friendly and will not support it. If you run into any challenges running on Windows, or other OS, I'm definitely open to looking into those issues so long as it's in a reproducible (read Conda) environment.
    
    PyTorch versions 1.9, 1.10, 1.11 have been tested with the latest versions of this code.
    
    I've tried to keep the dependencies minimal, the setup is as per the PyTorch default install instructions for Conda:
    ```
    conda create -n torch-env
    conda activate torch-env
    conda install pytorch torchvision cudatoolkit=11.3 -c pytorch
    conda install pyyaml
    ```

## Load a Pretrained Model

Pretrained models can be loaded using `timm.create_model`

```python
import timm

m = timm.create_model('mobilenetv3_large_100', pretrained=True)
m.eval()
```

## List Models with Pretrained Weights
```python
import timm
from pprint import pprint
model_names = timm.list_models(pretrained=True)
pprint(model_names)
>>> ['adv_inception_v3',
 'cspdarknet53',
 'cspresnext50',
 'densenet121',
 'densenet161',
 'densenet169',
 'densenet201',
 'densenetblur121d',
 'dla34',
 'dla46_c',
...
]
```

## List Model Architectures by Wildcard
```python
import timm
from pprint import pprint
model_names = timm.list_models('*resne*t*')
pprint(model_names)
>>> ['cspresnet50',
 'cspresnet50d',
 'cspresnet50w',
 'cspresnext50',
...
]
```