File size: 66,361 Bytes
786f6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
# Recent Changes

### Feb 7, 2023
* New inference benchmark numbers added in [results](results/) folder.
* Add convnext LAION CLIP trained weights and initial set of in1k fine-tunes
  * `convnext_base.clip_laion2b_augreg_ft_in1k` - 86.2% @ 256x256
  * `convnext_base.clip_laiona_augreg_ft_in1k_384` - 86.5% @ 384x384
  * `convnext_large_mlp.clip_laion2b_augreg_ft_in1k` - 87.3% @ 256x256
  * `convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384` - 87.9% @ 384x384
* Add DaViT models. Supports `features_only=True`. Adapted from https://github.com/dingmyu/davit by [Fredo](https://github.com/fffffgggg54).
* Use a common NormMlpClassifierHead across MaxViT, ConvNeXt, DaViT
* Add EfficientFormer-V2 model, update EfficientFormer, and refactor LeViT (closely related architectures). Weights on HF hub.
  * New EfficientFormer-V2 arch, significant refactor from original at (https://github.com/snap-research/EfficientFormer). Supports `features_only=True`.
  * Minor updates to EfficientFormer.
  * Refactor LeViT models to stages, add `features_only=True` support to new `conv` variants, weight remap required.
* Move ImageNet meta-data (synsets, indices) from `/results` to [`timm/data/_info`](timm/data/_info/).
* Add ImageNetInfo / DatasetInfo classes to provide labelling for various ImageNet classifier layouts in `timm`
  * Update `inference.py` to use, try: `python inference.py /folder/to/images --model convnext_small.in12k --label-type detail --topk 5`
* Ready for 0.8.10 pypi pre-release (final testing).

### Jan 20, 2023
* Add two convnext 12k -> 1k fine-tunes at 384x384
  * `convnext_tiny.in12k_ft_in1k_384` - 85.1 @ 384
  * `convnext_small.in12k_ft_in1k_384` - 86.2 @ 384

* Push all MaxxViT weights to HF hub, and add new ImageNet-12k -> 1k fine-tunes for `rw` base MaxViT and CoAtNet 1/2 models

|model                                                                                                                   |top1 |top5 |samples / sec  |Params (M)     |GMAC  |Act (M)|
|------------------------------------------------------------------------------------------------------------------------|----:|----:|--------------:|--------------:|-----:|------:|
|[maxvit_xlarge_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_xlarge_tf_512.in21k_ft_in1k)                    |88.53|98.64|          21.76|         475.77|534.14|1413.22|
|[maxvit_xlarge_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_xlarge_tf_384.in21k_ft_in1k)                    |88.32|98.54|          42.53|         475.32|292.78| 668.76|
|[maxvit_base_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_base_tf_512.in21k_ft_in1k)                        |88.20|98.53|          50.87|         119.88|138.02| 703.99|
|[maxvit_large_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_large_tf_512.in21k_ft_in1k)                      |88.04|98.40|          36.42|         212.33|244.75| 942.15|
|[maxvit_large_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_large_tf_384.in21k_ft_in1k)                      |87.98|98.56|          71.75|         212.03|132.55| 445.84|
|[maxvit_base_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_base_tf_384.in21k_ft_in1k)                        |87.92|98.54|         104.71|         119.65| 73.80| 332.90|
|[maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k)        |87.81|98.37|         106.55|         116.14| 70.97| 318.95|
|[maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k)  |87.47|98.37|         149.49|         116.09| 72.98| 213.74|
|[coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k)            |87.39|98.31|         160.80|          73.88| 47.69| 209.43|
|[maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k)        |86.89|98.02|         375.86|         116.14| 23.15|  92.64|
|[maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k)  |86.64|98.02|         501.03|         116.09| 24.20|  62.77|
|[maxvit_base_tf_512.in1k](https://huggingface.co/timm/maxvit_base_tf_512.in1k)                                          |86.60|97.92|          50.75|         119.88|138.02| 703.99|
|[coatnet_2_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_2_rw_224.sw_in12k_ft_in1k)                      |86.57|97.89|         631.88|          73.87| 15.09|  49.22|
|[maxvit_large_tf_512.in1k](https://huggingface.co/timm/maxvit_large_tf_512.in1k)                                        |86.52|97.88|          36.04|         212.33|244.75| 942.15|
|[coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k)            |86.49|97.90|         620.58|          73.88| 15.18|  54.78|
|[maxvit_base_tf_384.in1k](https://huggingface.co/timm/maxvit_base_tf_384.in1k)                                          |86.29|97.80|         101.09|         119.65| 73.80| 332.90|
|[maxvit_large_tf_384.in1k](https://huggingface.co/timm/maxvit_large_tf_384.in1k)                                        |86.23|97.69|          70.56|         212.03|132.55| 445.84|
|[maxvit_small_tf_512.in1k](https://huggingface.co/timm/maxvit_small_tf_512.in1k)                                        |86.10|97.76|          88.63|          69.13| 67.26| 383.77|
|[maxvit_tiny_tf_512.in1k](https://huggingface.co/timm/maxvit_tiny_tf_512.in1k)                                          |85.67|97.58|         144.25|          31.05| 33.49| 257.59|
|[maxvit_small_tf_384.in1k](https://huggingface.co/timm/maxvit_small_tf_384.in1k)                                        |85.54|97.46|         188.35|          69.02| 35.87| 183.65|
|[maxvit_tiny_tf_384.in1k](https://huggingface.co/timm/maxvit_tiny_tf_384.in1k)                                          |85.11|97.38|         293.46|          30.98| 17.53| 123.42|
|[maxvit_large_tf_224.in1k](https://huggingface.co/timm/maxvit_large_tf_224.in1k)                                        |84.93|96.97|         247.71|         211.79| 43.68| 127.35|
|[coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k)          |84.90|96.96|        1025.45|          41.72|  8.11|  40.13|
|[maxvit_base_tf_224.in1k](https://huggingface.co/timm/maxvit_base_tf_224.in1k)                                          |84.85|96.99|         358.25|         119.47| 24.04|  95.01|
|[maxxvit_rmlp_small_rw_256.sw_in1k](https://huggingface.co/timm/maxxvit_rmlp_small_rw_256.sw_in1k)                      |84.63|97.06|         575.53|          66.01| 14.67|  58.38|
|[coatnet_rmlp_2_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_224.sw_in1k)                              |84.61|96.74|         625.81|          73.88| 15.18|  54.78|
|[maxvit_rmlp_small_rw_224.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_small_rw_224.sw_in1k)                        |84.49|96.76|         693.82|          64.90| 10.75|  49.30|
|[maxvit_small_tf_224.in1k](https://huggingface.co/timm/maxvit_small_tf_224.in1k)                                        |84.43|96.83|         647.96|          68.93| 11.66|  53.17|
|[maxvit_rmlp_tiny_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_tiny_rw_256.sw_in1k)                          |84.23|96.78|         807.21|          29.15|  6.77|  46.92|
|[coatnet_1_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_1_rw_224.sw_in1k)                                        |83.62|96.38|         989.59|          41.72|  8.04|  34.60|
|[maxvit_tiny_rw_224.sw_in1k](https://huggingface.co/timm/maxvit_tiny_rw_224.sw_in1k)                                    |83.50|96.50|        1100.53|          29.06|  5.11|  33.11|
|[maxvit_tiny_tf_224.in1k](https://huggingface.co/timm/maxvit_tiny_tf_224.in1k)                                          |83.41|96.59|        1004.94|          30.92|  5.60|  35.78|
|[coatnet_rmlp_1_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_1_rw_224.sw_in1k)                              |83.36|96.45|        1093.03|          41.69|  7.85|  35.47|
|[maxxvitv2_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxxvitv2_nano_rw_256.sw_in1k)                              |83.11|96.33|        1276.88|          23.70|  6.26|  23.05|
|[maxxvit_rmlp_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxxvit_rmlp_nano_rw_256.sw_in1k)                        |83.03|96.34|        1341.24|          16.78|  4.37|  26.05|
|[maxvit_rmlp_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_nano_rw_256.sw_in1k)                          |82.96|96.26|        1283.24|          15.50|  4.47|  31.92|
|[maxvit_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_nano_rw_256.sw_in1k)                                    |82.93|96.23|        1218.17|          15.45|  4.46|  30.28|
|[coatnet_bn_0_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_bn_0_rw_224.sw_in1k)                                  |82.39|96.19|        1600.14|          27.44|  4.67|  22.04|
|[coatnet_0_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_0_rw_224.sw_in1k)                                        |82.39|95.84|        1831.21|          27.44|  4.43|  18.73|
|[coatnet_rmlp_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_nano_rw_224.sw_in1k)                        |82.05|95.87|        2109.09|          15.15|  2.62|  20.34|
|[coatnext_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnext_nano_rw_224.sw_in1k)                                |81.95|95.92|        2525.52|          14.70|  2.47|  12.80|
|[coatnet_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_nano_rw_224.sw_in1k)                                  |81.70|95.64|        2344.52|          15.14|  2.41|  15.41|
|[maxvit_rmlp_pico_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_pico_rw_256.sw_in1k)                          |80.53|95.21|        1594.71|           7.52|  1.85|  24.86|

### Jan 11, 2023
* Update ConvNeXt ImageNet-12k pretrain series w/ two new fine-tuned weights (and pre FT `.in12k` tags)
  * `convnext_nano.in12k_ft_in1k` - 82.3 @ 224, 82.9 @ 288  (previously released)
  * `convnext_tiny.in12k_ft_in1k` - 84.2 @ 224, 84.5 @ 288
  * `convnext_small.in12k_ft_in1k` - 85.2 @ 224, 85.3 @ 288

### Jan 6, 2023
* Finally got around to adding `--model-kwargs` and `--opt-kwargs` to scripts to pass through rare args directly to model classes from cmd line
  * `train.py /imagenet --model resnet50 --amp --model-kwargs output_stride=16 act_layer=silu`
  * `train.py /imagenet --model vit_base_patch16_clip_224 --img-size 240 --amp --model-kwargs img_size=240 patch_size=12`
* Cleanup some popular models to better support arg passthrough / merge with model configs, more to go.

### Jan 5, 2023
* ConvNeXt-V2 models and weights added to existing `convnext.py`
  * Paper: [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](http://arxiv.org/abs/2301.00808)
  * Reference impl: https://github.com/facebookresearch/ConvNeXt-V2 (NOTE: weights currently CC-BY-NC)
@dataclass
### Dec 23, 2022 🎄☃
* Add FlexiViT models and weights from https://github.com/google-research/big_vision (check out paper at https://arxiv.org/abs/2212.08013)
  * NOTE currently resizing is static on model creation, on-the-fly dynamic / train patch size sampling is a WIP
* Many more models updated to multi-weight and downloadable via HF hub now (convnext, efficientnet, mobilenet, vision_transformer*, beit)
* More model pretrained tag and adjustments, some model names changed (working on deprecation translations, consider main branch DEV branch right now, use 0.6.x for stable use)
* More ImageNet-12k (subset of 22k) pretrain models popping up:
  * `efficientnet_b5.in12k_ft_in1k` - 85.9 @ 448x448
  * `vit_medium_patch16_gap_384.in12k_ft_in1k` - 85.5 @ 384x384
  * `vit_medium_patch16_gap_256.in12k_ft_in1k` - 84.5 @ 256x256
  * `convnext_nano.in12k_ft_in1k` - 82.9 @ 288x288

### Dec 8, 2022
* Add 'EVA l' to `vision_transformer.py`, MAE style ViT-L/14 MIM pretrain w/ EVA-CLIP targets, FT on ImageNet-1k (w/ ImageNet-22k intermediate for some)
  * original source: https://github.com/baaivision/EVA

| model                                     | top1 | param_count |  gmac | macts | hub                                     |
|:------------------------------------------|-----:|------------:|------:|------:|:----------------------------------------|
| eva_large_patch14_336.in22k_ft_in22k_in1k | 89.2 |       304.5 | 191.1 | 270.2 | [link](https://huggingface.co/BAAI/EVA) |
| eva_large_patch14_336.in22k_ft_in1k       | 88.7 |       304.5 | 191.1 | 270.2 | [link](https://huggingface.co/BAAI/EVA) |
| eva_large_patch14_196.in22k_ft_in22k_in1k | 88.6 |       304.1 |  61.6 |  63.5 | [link](https://huggingface.co/BAAI/EVA) |
| eva_large_patch14_196.in22k_ft_in1k       | 87.9 |       304.1 |  61.6 |  63.5 | [link](https://huggingface.co/BAAI/EVA) |

### Dec 6, 2022
* Add 'EVA g', BEiT style ViT-g/14 model weights w/ both MIM pretrain and CLIP pretrain to `beit.py`.
  * original source: https://github.com/baaivision/EVA
  * paper: https://arxiv.org/abs/2211.07636

| model                                    |   top1 |   param_count |   gmac |   macts | hub                                     |
|:-----------------------------------------|-------:|--------------:|-------:|--------:|:----------------------------------------|
| eva_giant_patch14_560.m30m_ft_in22k_in1k |   89.8 |        1014.4 | 1906.8 |  2577.2 | [link](https://huggingface.co/BAAI/EVA) |
| eva_giant_patch14_336.m30m_ft_in22k_in1k |   89.6 |        1013   |  620.6 |   550.7 | [link](https://huggingface.co/BAAI/EVA) |
| eva_giant_patch14_336.clip_ft_in1k       |   89.4 |        1013   |  620.6 |   550.7 | [link](https://huggingface.co/BAAI/EVA) |
| eva_giant_patch14_224.clip_ft_in1k       |   89.1 |        1012.6 |  267.2 |   192.6 | [link](https://huggingface.co/BAAI/EVA) |

### Dec 5, 2022

* Pre-release (`0.8.0dev0`) of multi-weight support (`model_arch.pretrained_tag`). Install with `pip install --pre timm`
  * vision_transformer, maxvit, convnext are the first three model impl w/ support
  * model names are changing with this (previous _21k, etc. fn will merge), still sorting out deprecation handling
  * bugs are likely, but I need feedback so please try it out
  * if stability is needed, please use 0.6.x pypi releases or clone from [0.6.x branch](https://github.com/rwightman/pytorch-image-models/tree/0.6.x)
* Support for PyTorch 2.0 compile is added in train/validate/inference/benchmark, use `--torchcompile` argument
* Inference script allows more control over output, select k for top-class index + prob json, csv or parquet output
* Add a full set of fine-tuned CLIP image tower weights from both LAION-2B and original OpenAI CLIP models

| model                                            |   top1 |   param_count |   gmac |   macts | hub                                                                                  |
|:-------------------------------------------------|-------:|--------------:|-------:|--------:|:-------------------------------------------------------------------------------------|
| vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k  |   88.6 |         632.5 |  391   |   407.5 | [link](https://huggingface.co/timm/vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k)  |
| vit_large_patch14_clip_336.openai_ft_in12k_in1k  |   88.3 |         304.5 |  191.1 |   270.2 | [link](https://huggingface.co/timm/vit_large_patch14_clip_336.openai_ft_in12k_in1k)  |
| vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k  |   88.2 |         632   |  167.4 |   139.4 | [link](https://huggingface.co/timm/vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k)  |
| vit_large_patch14_clip_336.laion2b_ft_in12k_in1k |   88.2 |         304.5 |  191.1 |   270.2 | [link](https://huggingface.co/timm/vit_large_patch14_clip_336.laion2b_ft_in12k_in1k) |
| vit_large_patch14_clip_224.openai_ft_in12k_in1k  |   88.2 |         304.2 |   81.1 |    88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.openai_ft_in12k_in1k)  |
| vit_large_patch14_clip_224.laion2b_ft_in12k_in1k |   87.9 |         304.2 |   81.1 |    88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.laion2b_ft_in12k_in1k) |
| vit_large_patch14_clip_224.openai_ft_in1k        |   87.9 |         304.2 |   81.1 |    88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.openai_ft_in1k)        |
| vit_large_patch14_clip_336.laion2b_ft_in1k       |   87.9 |         304.5 |  191.1 |   270.2 | [link](https://huggingface.co/timm/vit_large_patch14_clip_336.laion2b_ft_in1k)       |
| vit_huge_patch14_clip_224.laion2b_ft_in1k        |   87.6 |         632   |  167.4 |   139.4 | [link](https://huggingface.co/timm/vit_huge_patch14_clip_224.laion2b_ft_in1k)        |
| vit_large_patch14_clip_224.laion2b_ft_in1k       |   87.3 |         304.2 |   81.1 |    88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.laion2b_ft_in1k)       |
| vit_base_patch16_clip_384.laion2b_ft_in12k_in1k  |   87.2 |          86.9 |   55.5 |   101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.laion2b_ft_in12k_in1k)  |
| vit_base_patch16_clip_384.openai_ft_in12k_in1k   |   87   |          86.9 |   55.5 |   101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.openai_ft_in12k_in1k)   |
| vit_base_patch16_clip_384.laion2b_ft_in1k        |   86.6 |          86.9 |   55.5 |   101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.laion2b_ft_in1k)        |
| vit_base_patch16_clip_384.openai_ft_in1k         |   86.2 |          86.9 |   55.5 |   101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.openai_ft_in1k)         |
| vit_base_patch16_clip_224.laion2b_ft_in12k_in1k  |   86.2 |          86.6 |   17.6 |    23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.laion2b_ft_in12k_in1k)  |
| vit_base_patch16_clip_224.openai_ft_in12k_in1k   |   85.9 |          86.6 |   17.6 |    23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.openai_ft_in12k_in1k)   |
| vit_base_patch32_clip_448.laion2b_ft_in12k_in1k  |   85.8 |          88.3 |   17.9 |    23.9 | [link](https://huggingface.co/timm/vit_base_patch32_clip_448.laion2b_ft_in12k_in1k)  |
| vit_base_patch16_clip_224.laion2b_ft_in1k        |   85.5 |          86.6 |   17.6 |    23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.laion2b_ft_in1k)        |
| vit_base_patch32_clip_384.laion2b_ft_in12k_in1k  |   85.4 |          88.3 |   13.1 |    16.5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_384.laion2b_ft_in12k_in1k)  |
| vit_base_patch16_clip_224.openai_ft_in1k         |   85.3 |          86.6 |   17.6 |    23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.openai_ft_in1k)         |
| vit_base_patch32_clip_384.openai_ft_in12k_in1k   |   85.2 |          88.3 |   13.1 |    16.5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_384.openai_ft_in12k_in1k)   |
| vit_base_patch32_clip_224.laion2b_ft_in12k_in1k  |   83.3 |          88.2 |    4.4 |     5   | [link](https://huggingface.co/timm/vit_base_patch32_clip_224.laion2b_ft_in12k_in1k)  |
| vit_base_patch32_clip_224.laion2b_ft_in1k        |   82.6 |          88.2 |    4.4 |     5   | [link](https://huggingface.co/timm/vit_base_patch32_clip_224.laion2b_ft_in1k)        |
| vit_base_patch32_clip_224.openai_ft_in1k         |   81.9 |          88.2 |    4.4 |     5   | [link](https://huggingface.co/timm/vit_base_patch32_clip_224.openai_ft_in1k)         |

* Port of MaxViT Tensorflow Weights from official impl at https://github.com/google-research/maxvit
  * There was larger than expected drops for the upscaled 384/512 in21k fine-tune weights, possible detail missing, but the 21k FT did seem sensitive to small preprocessing

| model                              |   top1 |   param_count |   gmac |   macts | hub                                                                    |
|:-----------------------------------|-------:|--------------:|-------:|--------:|:-----------------------------------------------------------------------|
| maxvit_xlarge_tf_512.in21k_ft_in1k |   88.5 |         475.8 |  534.1 |  1413.2 | [link](https://huggingface.co/timm/maxvit_xlarge_tf_512.in21k_ft_in1k) |
| maxvit_xlarge_tf_384.in21k_ft_in1k |   88.3 |         475.3 |  292.8 |   668.8 | [link](https://huggingface.co/timm/maxvit_xlarge_tf_384.in21k_ft_in1k) |
| maxvit_base_tf_512.in21k_ft_in1k   |   88.2 |         119.9 |  138   |   704   | [link](https://huggingface.co/timm/maxvit_base_tf_512.in21k_ft_in1k)   |
| maxvit_large_tf_512.in21k_ft_in1k  |   88   |         212.3 |  244.8 |   942.2 | [link](https://huggingface.co/timm/maxvit_large_tf_512.in21k_ft_in1k)  |
| maxvit_large_tf_384.in21k_ft_in1k  |   88   |         212   |  132.6 |   445.8 | [link](https://huggingface.co/timm/maxvit_large_tf_384.in21k_ft_in1k)  |
| maxvit_base_tf_384.in21k_ft_in1k   |   87.9 |         119.6 |   73.8 |   332.9 | [link](https://huggingface.co/timm/maxvit_base_tf_384.in21k_ft_in1k)   |
| maxvit_base_tf_512.in1k            |   86.6 |         119.9 |  138   |   704   | [link](https://huggingface.co/timm/maxvit_base_tf_512.in1k)            |
| maxvit_large_tf_512.in1k           |   86.5 |         212.3 |  244.8 |   942.2 | [link](https://huggingface.co/timm/maxvit_large_tf_512.in1k)           |
| maxvit_base_tf_384.in1k            |   86.3 |         119.6 |   73.8 |   332.9 | [link](https://huggingface.co/timm/maxvit_base_tf_384.in1k)            |
| maxvit_large_tf_384.in1k           |   86.2 |         212   |  132.6 |   445.8 | [link](https://huggingface.co/timm/maxvit_large_tf_384.in1k)           |
| maxvit_small_tf_512.in1k           |   86.1 |          69.1 |   67.3 |   383.8 | [link](https://huggingface.co/timm/maxvit_small_tf_512.in1k)           |
| maxvit_tiny_tf_512.in1k            |   85.7 |          31   |   33.5 |   257.6 | [link](https://huggingface.co/timm/maxvit_tiny_tf_512.in1k)            |
| maxvit_small_tf_384.in1k           |   85.5 |          69   |   35.9 |   183.6 | [link](https://huggingface.co/timm/maxvit_small_tf_384.in1k)           |
| maxvit_tiny_tf_384.in1k            |   85.1 |          31   |   17.5 |   123.4 | [link](https://huggingface.co/timm/maxvit_tiny_tf_384.in1k)            |
| maxvit_large_tf_224.in1k           |   84.9 |         211.8 |   43.7 |   127.4 | [link](https://huggingface.co/timm/maxvit_large_tf_224.in1k)           |
| maxvit_base_tf_224.in1k            |   84.9 |         119.5 |   24   |    95   | [link](https://huggingface.co/timm/maxvit_base_tf_224.in1k)            |
| maxvit_small_tf_224.in1k           |   84.4 |          68.9 |   11.7 |    53.2 | [link](https://huggingface.co/timm/maxvit_small_tf_224.in1k)           |
| maxvit_tiny_tf_224.in1k            |   83.4 |          30.9 |    5.6 |    35.8 | [link](https://huggingface.co/timm/maxvit_tiny_tf_224.in1k)            |

### Oct 15, 2022
* Train and validation script enhancements
* Non-GPU (ie CPU) device support
* SLURM compatibility for train script
* HF datasets support (via ReaderHfds)
* TFDS/WDS dataloading improvements (sample padding/wrap for distributed use fixed wrt sample count estimate)
* in_chans !=3 support for scripts / loader
* Adan optimizer
* Can enable per-step LR scheduling via args
* Dataset 'parsers' renamed to 'readers', more descriptive of purpose
* AMP args changed, APEX via `--amp-impl apex`, bfloat16 supportedf via `--amp-dtype bfloat16`
* main branch switched to 0.7.x version, 0.6x forked for stable release of weight only adds
* master -> main branch rename

### Oct 10, 2022
* More weights in `maxxvit` series, incl first ConvNeXt block based `coatnext` and `maxxvit` experiments:
  * `coatnext_nano_rw_224` - 82.0 @ 224 (G) -- (uses ConvNeXt conv block, no BatchNorm)
  * `maxxvit_rmlp_nano_rw_256` - 83.0 @ 256, 83.7 @ 320  (G) (uses ConvNeXt conv block, no BN)
  * `maxvit_rmlp_small_rw_224` - 84.5 @ 224, 85.1 @ 320 (G)
  * `maxxvit_rmlp_small_rw_256` - 84.6 @ 256, 84.9 @ 288 (G) -- could be trained better, hparams need tuning (uses ConvNeXt block, no BN)
  * `coatnet_rmlp_2_rw_224` - 84.6 @ 224, 85 @ 320  (T)
  * NOTE: official MaxVit weights (in1k) have been released at https://github.com/google-research/maxvit -- some extra work is needed to port and adapt since my impl was created independently of theirs and has a few small differences + the whole TF same padding fun.

### Sept 23, 2022
* LAION-2B CLIP image towers supported as pretrained backbones for fine-tune or features (no classifier)
  * vit_base_patch32_224_clip_laion2b
  * vit_large_patch14_224_clip_laion2b
  * vit_huge_patch14_224_clip_laion2b
  * vit_giant_patch14_224_clip_laion2b

### Sept 7, 2022
* Hugging Face [`timm` docs](https://huggingface.co/docs/hub/timm) home now exists, look for more here in the future
* Add BEiT-v2 weights for base and large 224x224 models from https://github.com/microsoft/unilm/tree/master/beit2
* Add more weights in `maxxvit` series incl a `pico` (7.5M params, 1.9 GMACs), two `tiny` variants:
  * `maxvit_rmlp_pico_rw_256` - 80.5 @ 256, 81.3 @ 320  (T)
  * `maxvit_tiny_rw_224` - 83.5 @ 224 (G)
  * `maxvit_rmlp_tiny_rw_256` - 84.2 @ 256, 84.8 @ 320 (T)

### Aug 29, 2022
* MaxVit window size scales with img_size by default. Add new RelPosMlp MaxViT weight that leverages this:
  * `maxvit_rmlp_nano_rw_256` - 83.0 @ 256, 83.6 @ 320  (T)

### Aug 26, 2022
* CoAtNet (https://arxiv.org/abs/2106.04803) and MaxVit (https://arxiv.org/abs/2204.01697) `timm` original models
  * both found in [`maxxvit.py`](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/maxxvit.py) model def, contains numerous experiments outside scope of original papers
  * an unfinished Tensorflow version from MaxVit authors can be found https://github.com/google-research/maxvit
* Initial CoAtNet and MaxVit timm pretrained weights (working on more):
  * `coatnet_nano_rw_224` - 81.7 @ 224  (T)
  * `coatnet_rmlp_nano_rw_224` - 82.0 @ 224, 82.8 @ 320 (T)
  * `coatnet_0_rw_224` - 82.4  (T)  -- NOTE timm '0' coatnets have 2 more 3rd stage blocks
  * `coatnet_bn_0_rw_224` - 82.4  (T)
  * `maxvit_nano_rw_256` - 82.9 @ 256  (T)
  * `coatnet_rmlp_1_rw_224` - 83.4 @ 224, 84 @ 320  (T)
  * `coatnet_1_rw_224` - 83.6 @ 224 (G)
  * (T) = TPU trained with `bits_and_tpu` branch training code, (G) = GPU trained
* GCVit (weights adapted from https://github.com/NVlabs/GCVit, code 100% `timm` re-write for license purposes)
* MViT-V2 (multi-scale vit, adapted from https://github.com/facebookresearch/mvit)
* EfficientFormer (adapted from https://github.com/snap-research/EfficientFormer)
* PyramidVisionTransformer-V2 (adapted from https://github.com/whai362/PVT)
* 'Fast Norm' support for LayerNorm and GroupNorm that avoids float32 upcast w/ AMP (uses APEX LN if available for further boost)

### Aug 15, 2022
* ConvNeXt atto weights added
  * `convnext_atto` - 75.7 @ 224, 77.0 @ 288
  * `convnext_atto_ols` - 75.9  @ 224, 77.2 @ 288

### Aug 5, 2022
* More custom ConvNeXt smaller model defs with weights
  * `convnext_femto` - 77.5 @ 224, 78.7 @ 288
  * `convnext_femto_ols` - 77.9  @ 224, 78.9 @ 288
  * `convnext_pico` - 79.5 @ 224, 80.4 @ 288
  * `convnext_pico_ols` - 79.5 @ 224, 80.5 @ 288
  * `convnext_nano_ols` - 80.9 @ 224, 81.6 @ 288
* Updated EdgeNeXt to improve ONNX export, add new base variant and weights from original (https://github.com/mmaaz60/EdgeNeXt)

### July 28, 2022
* Add freshly minted DeiT-III Medium (width=512, depth=12, num_heads=8) model weights. Thanks [Hugo Touvron](https://github.com/TouvronHugo)!

### July 27, 2022
* All runtime benchmark and validation result csv files are finally up-to-date!
* A few more weights & model defs added:
  * `darknetaa53` -  79.8 @ 256, 80.5 @ 288
  * `convnext_nano` - 80.8 @ 224, 81.5 @ 288
  * `cs3sedarknet_l` - 81.2 @ 256, 81.8 @ 288
  * `cs3darknet_x` - 81.8 @ 256, 82.2 @ 288
  * `cs3sedarknet_x` - 82.2 @ 256, 82.7 @ 288
  * `cs3edgenet_x` - 82.2 @ 256, 82.7 @ 288
  * `cs3se_edgenet_x` - 82.8 @ 256, 83.5 @ 320
* `cs3*` weights above all trained on TPU w/ `bits_and_tpu` branch. Thanks to TRC program!
* Add output_stride=8 and 16 support to ConvNeXt (dilation)
* deit3 models not being able to resize pos_emb fixed
* Version 0.6.7 PyPi release (/w above bug fixes and new weighs since 0.6.5)

### July 8, 2022
More models, more fixes
* Official research models (w/ weights) added:
  * EdgeNeXt from (https://github.com/mmaaz60/EdgeNeXt)
  * MobileViT-V2 from (https://github.com/apple/ml-cvnets)
  * DeiT III (Revenge of the ViT) from (https://github.com/facebookresearch/deit)
* My own models:
  * Small `ResNet` defs added by request with 1 block repeats for both basic and bottleneck (resnet10 and resnet14)
  * `CspNet` refactored with dataclass config, simplified CrossStage3 (`cs3`) option. These are closer to YOLO-v5+ backbone defs.
  * More relative position vit fiddling. Two `srelpos` (shared relative position) models trained, and a medium w/ class token.
  * Add an alternate downsample mode to EdgeNeXt and train a `small` model. Better than original small, but not their new USI trained weights.
* My own model weight results (all ImageNet-1k training)
  * `resnet10t` - 66.5 @ 176, 68.3 @ 224
  * `resnet14t` - 71.3 @ 176, 72.3 @ 224
  * `resnetaa50` - 80.6 @ 224 , 81.6 @ 288
  * `darknet53` -  80.0 @ 256, 80.5 @ 288
  * `cs3darknet_m` - 77.0 @ 256, 77.6 @ 288
  * `cs3darknet_focus_m` - 76.7 @ 256, 77.3 @ 288
  * `cs3darknet_l` - 80.4 @ 256, 80.9 @ 288
  * `cs3darknet_focus_l` - 80.3 @ 256, 80.9 @ 288
  * `vit_srelpos_small_patch16_224` - 81.1 @ 224, 82.1 @ 320
  * `vit_srelpos_medium_patch16_224` - 82.3 @ 224, 83.1 @ 320
  * `vit_relpos_small_patch16_cls_224` - 82.6 @ 224, 83.6 @ 320
  * `edgnext_small_rw` - 79.6 @ 224, 80.4 @ 320
* `cs3`, `darknet`, and `vit_*relpos` weights above all trained on TPU thanks to TRC program! Rest trained on overheating GPUs.
* Hugging Face Hub support fixes verified, demo notebook TBA
* Pretrained weights / configs can be loaded externally (ie from local disk) w/ support for head adaptation.
* Add support to change image extensions scanned by `timm` datasets/readers. See (https://github.com/rwightman/pytorch-image-models/pull/1274#issuecomment-1178303103)
* Default ConvNeXt LayerNorm impl to use `F.layer_norm(x.permute(0, 2, 3, 1), ...).permute(0, 3, 1, 2)` via `LayerNorm2d` in all cases.
  * a bit slower than previous custom impl on some hardware (ie Ampere w/ CL), but overall fewer regressions across wider HW / PyTorch version ranges.
  * previous impl exists as `LayerNormExp2d` in `models/layers/norm.py`
* Numerous bug fixes
* Currently testing for imminent PyPi 0.6.x release
* LeViT pretraining of larger models still a WIP, they don't train well / easily without distillation. Time to add distill support (finally)?
* ImageNet-22k weight training + finetune ongoing, work on multi-weight support (slowly) chugging along (there are a LOT of weights, sigh) ...

### May 13, 2022
* Official Swin-V2 models and weights added from (https://github.com/microsoft/Swin-Transformer). Cleaned up to support torchscript.
* Some refactoring for existing `timm` Swin-V2-CR impl, will likely do a bit more to bring parts closer to official and decide whether to merge some aspects.
* More Vision Transformer relative position / residual post-norm experiments (all trained on TPU thanks to TRC program)
  * `vit_relpos_small_patch16_224` - 81.5 @ 224, 82.5 @ 320 -- rel pos, layer scale, no class token, avg pool
  * `vit_relpos_medium_patch16_rpn_224` - 82.3 @ 224, 83.1 @ 320 -- rel pos + res-post-norm, no class token, avg pool
  * `vit_relpos_medium_patch16_224` - 82.5 @ 224, 83.3 @ 320 -- rel pos, layer scale, no class token, avg pool
  * `vit_relpos_base_patch16_gapcls_224` - 82.8 @ 224, 83.9 @ 320 -- rel pos, layer scale, class token, avg pool (by mistake)
* Bring 512 dim, 8-head 'medium' ViT model variant back to life (after using in a pre DeiT 'small' model for first ViT impl back in 2020)
* Add ViT relative position support for switching btw existing impl and some additions in official Swin-V2 impl for future trials
* Sequencer2D impl (https://arxiv.org/abs/2205.01972), added via PR from author (https://github.com/okojoalg)

### May 2, 2022
* Vision Transformer experiments adding Relative Position (Swin-V2 log-coord) (`vision_transformer_relpos.py`) and Residual Post-Norm branches (from Swin-V2) (`vision_transformer*.py`)
  * `vit_relpos_base_patch32_plus_rpn_256` - 79.5 @ 256, 80.6 @ 320 -- rel pos + extended width + res-post-norm, no class token, avg pool
  * `vit_relpos_base_patch16_224` - 82.5 @ 224, 83.6 @ 320 -- rel pos, layer scale, no class token, avg pool
  * `vit_base_patch16_rpn_224` - 82.3 @ 224 -- rel pos + res-post-norm, no class token, avg pool
* Vision Transformer refactor to remove representation layer that was only used in initial vit and rarely used since with newer pretrain (ie `How to Train Your ViT`)
* `vit_*` models support removal of class token, use of global average pool, use of fc_norm (ala beit, mae).

### April 22, 2022
* `timm` models are now officially supported in [fast.ai](https://www.fast.ai/)! Just in time for the new Practical Deep Learning course. `timmdocs` documentation link updated to [timm.fast.ai](http://timm.fast.ai/).
* Two more model weights added in the TPU trained [series](https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-tpu-weights). Some In22k pretrain still in progress.
  * `seresnext101d_32x8d` - 83.69 @ 224, 84.35 @ 288
  * `seresnextaa101d_32x8d` (anti-aliased w/ AvgPool2d) - 83.85 @ 224, 84.57 @ 288

### March 23, 2022
* Add `ParallelBlock` and `LayerScale` option to base vit models to support model configs in [Three things everyone should know about ViT](https://arxiv.org/abs/2203.09795)
* `convnext_tiny_hnf` (head norm first) weights trained with (close to) A2 recipe, 82.2% top-1, could do better with more epochs.

### March 21, 2022
* Merge `norm_norm_norm`. **IMPORTANT** this update for a coming 0.6.x release will likely de-stabilize the master branch for a while. Branch [`0.5.x`](https://github.com/rwightman/pytorch-image-models/tree/0.5.x) or a previous 0.5.x release can be used if stability is required.
* Significant weights update (all TPU trained) as described in this [release](https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-tpu-weights)
  * `regnety_040` - 82.3 @ 224, 82.96 @ 288
  * `regnety_064` - 83.0 @ 224, 83.65 @ 288
  * `regnety_080` - 83.17 @ 224, 83.86 @ 288
  * `regnetv_040` - 82.44 @ 224, 83.18 @ 288   (timm pre-act)
  * `regnetv_064` - 83.1 @ 224, 83.71 @ 288   (timm pre-act)
  * `regnetz_040` - 83.67 @ 256, 84.25 @ 320
  * `regnetz_040h` - 83.77 @ 256, 84.5 @ 320 (w/ extra fc in head)
  * `resnetv2_50d_gn` - 80.8 @ 224, 81.96 @ 288 (pre-act GroupNorm)
  * `resnetv2_50d_evos` 80.77 @ 224, 82.04 @ 288 (pre-act EvoNormS)
  * `regnetz_c16_evos`  - 81.9 @ 256, 82.64 @ 320 (EvoNormS)
  * `regnetz_d8_evos`  - 83.42 @ 256, 84.04 @ 320 (EvoNormS)
  * `xception41p` - 82 @ 299   (timm pre-act)
  * `xception65` -  83.17 @ 299
  * `xception65p` -  83.14 @ 299   (timm pre-act)
  * `resnext101_64x4d` - 82.46 @ 224, 83.16 @ 288
  * `seresnext101_32x8d` - 83.57 @ 224, 84.270 @ 288
  * `resnetrs200` - 83.85 @ 256, 84.44 @ 320
* HuggingFace hub support fixed w/ initial groundwork for allowing alternative 'config sources' for pretrained model definitions and weights (generic local file / remote url support soon)
* SwinTransformer-V2 implementation added. Submitted by [Christoph Reich](https://github.com/ChristophReich1996). Training experiments and model changes by myself are ongoing so expect compat breaks.
* Swin-S3 (AutoFormerV2) models / weights added from https://github.com/microsoft/Cream/tree/main/AutoFormerV2
* MobileViT models w/ weights adapted from https://github.com/apple/ml-cvnets
* PoolFormer models w/ weights adapted from https://github.com/sail-sg/poolformer
* VOLO models w/ weights adapted from https://github.com/sail-sg/volo
* Significant work experimenting with non-BatchNorm norm layers such as EvoNorm, FilterResponseNorm, GroupNorm, etc
* Enhance support for alternate norm + act ('NormAct') layers added to a number of models, esp EfficientNet/MobileNetV3, RegNet, and aligned Xception
* Grouped conv support added to EfficientNet family
* Add 'group matching' API to all models to allow grouping model parameters for application of 'layer-wise' LR decay, lr scale added to LR scheduler
* Gradient checkpointing support added to many models
* `forward_head(x, pre_logits=False)` fn added to all models to allow separate calls of `forward_features` + `forward_head`
* All vision transformer and vision MLP models update to return non-pooled / non-token selected features from `foward_features`, for consistency with CNN models, token selection or pooling now applied in `forward_head`

### Feb 2, 2022
* [Chris Hughes](https://github.com/Chris-hughes10) posted an exhaustive run through of `timm` on his blog yesterday. Well worth a read. [Getting Started with PyTorch Image Models (timm): A Practitioner’s Guide](https://towardsdatascience.com/getting-started-with-pytorch-image-models-timm-a-practitioners-guide-4e77b4bf9055)
* I'm currently prepping to merge the `norm_norm_norm` branch back to master (ver 0.6.x) in next week or so.
  * The changes are more extensive than usual and may destabilize and break some model API use (aiming for full backwards compat). So, beware `pip install git+https://github.com/rwightman/pytorch-image-models` installs!
  * `0.5.x` releases and a `0.5.x` branch will remain stable with a cherry pick or two until dust clears. Recommend sticking to pypi install for a bit if you want stable.

### Jan 14, 2022
* Version 0.5.4 w/ release to be pushed to pypi. It's been a while since last pypi update and riskier changes will be merged to main branch soon....
* Add ConvNeXT models /w weights from official impl (https://github.com/facebookresearch/ConvNeXt), a few perf tweaks, compatible with timm features
* Tried training a few small (~1.8-3M param) / mobile optimized models, a few are good so far, more on the way...
  * `mnasnet_small` - 65.6 top-1
  * `mobilenetv2_050` - 65.9
  * `lcnet_100/075/050` - 72.1 / 68.8 / 63.1
  * `semnasnet_075` - 73
  * `fbnetv3_b/d/g` - 79.1 / 79.7 / 82.0
* TinyNet models added by [rsomani95](https://github.com/rsomani95)
* LCNet added via MobileNetV3 architecture

### Jan 5, 2023
* ConvNeXt-V2 models and weights added to existing `convnext.py`
  * Paper: [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](http://arxiv.org/abs/2301.00808)
  * Reference impl: https://github.com/facebookresearch/ConvNeXt-V2 (NOTE: weights currently CC-BY-NC)

### Dec 23, 2022 🎄☃
* Add FlexiViT models and weights from https://github.com/google-research/big_vision (check out paper at https://arxiv.org/abs/2212.08013)
  * NOTE currently resizing is static on model creation, on-the-fly dynamic / train patch size sampling is a WIP
* Many more models updated to multi-weight and downloadable via HF hub now (convnext, efficientnet, mobilenet, vision_transformer*, beit)
* More model pretrained tag and adjustments, some model names changed (working on deprecation translations, consider main branch DEV branch right now, use 0.6.x for stable use)
* More ImageNet-12k (subset of 22k) pretrain models popping up:
  * `efficientnet_b5.in12k_ft_in1k` - 85.9 @ 448x448
  * `vit_medium_patch16_gap_384.in12k_ft_in1k` - 85.5 @ 384x384
  * `vit_medium_patch16_gap_256.in12k_ft_in1k` - 84.5 @ 256x256
  * `convnext_nano.in12k_ft_in1k` - 82.9 @ 288x288

### Dec 8, 2022
* Add 'EVA l' to `vision_transformer.py`, MAE style ViT-L/14 MIM pretrain w/ EVA-CLIP targets, FT on ImageNet-1k (w/ ImageNet-22k intermediate for some)
  * original source: https://github.com/baaivision/EVA

| model                                     | top1 | param_count |  gmac | macts | hub                                     |
|:------------------------------------------|-----:|------------:|------:|------:|:----------------------------------------|
| eva_large_patch14_336.in22k_ft_in22k_in1k | 89.2 |       304.5 | 191.1 | 270.2 | [link](https://huggingface.co/BAAI/EVA) |
| eva_large_patch14_336.in22k_ft_in1k       | 88.7 |       304.5 | 191.1 | 270.2 | [link](https://huggingface.co/BAAI/EVA) |
| eva_large_patch14_196.in22k_ft_in22k_in1k | 88.6 |       304.1 |  61.6 |  63.5 | [link](https://huggingface.co/BAAI/EVA) |
| eva_large_patch14_196.in22k_ft_in1k       | 87.9 |       304.1 |  61.6 |  63.5 | [link](https://huggingface.co/BAAI/EVA) |

### Dec 6, 2022
* Add 'EVA g', BEiT style ViT-g/14 model weights w/ both MIM pretrain and CLIP pretrain to `beit.py`. 
  * original source: https://github.com/baaivision/EVA
  * paper: https://arxiv.org/abs/2211.07636

| model                                    |   top1 |   param_count |   gmac |   macts | hub                                     |
|:-----------------------------------------|-------:|--------------:|-------:|--------:|:----------------------------------------|
| eva_giant_patch14_560.m30m_ft_in22k_in1k |   89.8 |        1014.4 | 1906.8 |  2577.2 | [link](https://huggingface.co/BAAI/EVA) |
| eva_giant_patch14_336.m30m_ft_in22k_in1k |   89.6 |        1013   |  620.6 |   550.7 | [link](https://huggingface.co/BAAI/EVA) |
| eva_giant_patch14_336.clip_ft_in1k       |   89.4 |        1013   |  620.6 |   550.7 | [link](https://huggingface.co/BAAI/EVA) |
| eva_giant_patch14_224.clip_ft_in1k       |   89.1 |        1012.6 |  267.2 |   192.6 | [link](https://huggingface.co/BAAI/EVA) |

### Dec 5, 2022

* Pre-release (`0.8.0dev0`) of multi-weight support (`model_arch.pretrained_tag`). Install with `pip install --pre timm`
  * vision_transformer, maxvit, convnext are the first three model impl w/ support
  * model names are changing with this (previous _21k, etc. fn will merge), still sorting out deprecation handling
  * bugs are likely, but I need feedback so please try it out
  * if stability is needed, please use 0.6.x pypi releases or clone from [0.6.x branch](https://github.com/rwightman/pytorch-image-models/tree/0.6.x)
* Support for PyTorch 2.0 compile is added in train/validate/inference/benchmark, use `--torchcompile` argument
* Inference script allows more control over output, select k for top-class index + prob json, csv or parquet output
* Add a full set of fine-tuned CLIP image tower weights from both LAION-2B and original OpenAI CLIP models

| model                                            |   top1 |   param_count |   gmac |   macts | hub                                                                                  |
|:-------------------------------------------------|-------:|--------------:|-------:|--------:|:-------------------------------------------------------------------------------------|
| vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k  |   88.6 |         632.5 |  391   |   407.5 | [link](https://huggingface.co/timm/vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k)  |
| vit_large_patch14_clip_336.openai_ft_in12k_in1k  |   88.3 |         304.5 |  191.1 |   270.2 | [link](https://huggingface.co/timm/vit_large_patch14_clip_336.openai_ft_in12k_in1k)  |
| vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k  |   88.2 |         632   |  167.4 |   139.4 | [link](https://huggingface.co/timm/vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k)  |
| vit_large_patch14_clip_336.laion2b_ft_in12k_in1k |   88.2 |         304.5 |  191.1 |   270.2 | [link](https://huggingface.co/timm/vit_large_patch14_clip_336.laion2b_ft_in12k_in1k) |
| vit_large_patch14_clip_224.openai_ft_in12k_in1k  |   88.2 |         304.2 |   81.1 |    88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.openai_ft_in12k_in1k)  |
| vit_large_patch14_clip_224.laion2b_ft_in12k_in1k |   87.9 |         304.2 |   81.1 |    88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.laion2b_ft_in12k_in1k) |
| vit_large_patch14_clip_224.openai_ft_in1k        |   87.9 |         304.2 |   81.1 |    88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.openai_ft_in1k)        |
| vit_large_patch14_clip_336.laion2b_ft_in1k       |   87.9 |         304.5 |  191.1 |   270.2 | [link](https://huggingface.co/timm/vit_large_patch14_clip_336.laion2b_ft_in1k)       |
| vit_huge_patch14_clip_224.laion2b_ft_in1k        |   87.6 |         632   |  167.4 |   139.4 | [link](https://huggingface.co/timm/vit_huge_patch14_clip_224.laion2b_ft_in1k)        |
| vit_large_patch14_clip_224.laion2b_ft_in1k       |   87.3 |         304.2 |   81.1 |    88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.laion2b_ft_in1k)       |
| vit_base_patch16_clip_384.laion2b_ft_in12k_in1k  |   87.2 |          86.9 |   55.5 |   101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.laion2b_ft_in12k_in1k)  |
| vit_base_patch16_clip_384.openai_ft_in12k_in1k   |   87   |          86.9 |   55.5 |   101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.openai_ft_in12k_in1k)   |
| vit_base_patch16_clip_384.laion2b_ft_in1k        |   86.6 |          86.9 |   55.5 |   101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.laion2b_ft_in1k)        |
| vit_base_patch16_clip_384.openai_ft_in1k         |   86.2 |          86.9 |   55.5 |   101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.openai_ft_in1k)         |
| vit_base_patch16_clip_224.laion2b_ft_in12k_in1k  |   86.2 |          86.6 |   17.6 |    23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.laion2b_ft_in12k_in1k)  |
| vit_base_patch16_clip_224.openai_ft_in12k_in1k   |   85.9 |          86.6 |   17.6 |    23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.openai_ft_in12k_in1k)   |
| vit_base_patch32_clip_448.laion2b_ft_in12k_in1k  |   85.8 |          88.3 |   17.9 |    23.9 | [link](https://huggingface.co/timm/vit_base_patch32_clip_448.laion2b_ft_in12k_in1k)  |
| vit_base_patch16_clip_224.laion2b_ft_in1k        |   85.5 |          86.6 |   17.6 |    23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.laion2b_ft_in1k)        |
| vit_base_patch32_clip_384.laion2b_ft_in12k_in1k  |   85.4 |          88.3 |   13.1 |    16.5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_384.laion2b_ft_in12k_in1k)  |
| vit_base_patch16_clip_224.openai_ft_in1k         |   85.3 |          86.6 |   17.6 |    23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.openai_ft_in1k)         |
| vit_base_patch32_clip_384.openai_ft_in12k_in1k   |   85.2 |          88.3 |   13.1 |    16.5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_384.openai_ft_in12k_in1k)   |
| vit_base_patch32_clip_224.laion2b_ft_in12k_in1k  |   83.3 |          88.2 |    4.4 |     5   | [link](https://huggingface.co/timm/vit_base_patch32_clip_224.laion2b_ft_in12k_in1k)  |
| vit_base_patch32_clip_224.laion2b_ft_in1k        |   82.6 |          88.2 |    4.4 |     5   | [link](https://huggingface.co/timm/vit_base_patch32_clip_224.laion2b_ft_in1k)        |
| vit_base_patch32_clip_224.openai_ft_in1k         |   81.9 |          88.2 |    4.4 |     5   | [link](https://huggingface.co/timm/vit_base_patch32_clip_224.openai_ft_in1k)         |

* Port of MaxViT Tensorflow Weights from official impl at https://github.com/google-research/maxvit
  * There was larger than expected drops for the upscaled 384/512 in21k fine-tune weights, possible detail missing, but the 21k FT did seem sensitive to small preprocessing

| model                              |   top1 |   param_count |   gmac |   macts | hub                                                                    |
|:-----------------------------------|-------:|--------------:|-------:|--------:|:-----------------------------------------------------------------------|
| maxvit_xlarge_tf_512.in21k_ft_in1k |   88.5 |         475.8 |  534.1 |  1413.2 | [link](https://huggingface.co/timm/maxvit_xlarge_tf_512.in21k_ft_in1k) |
| maxvit_xlarge_tf_384.in21k_ft_in1k |   88.3 |         475.3 |  292.8 |   668.8 | [link](https://huggingface.co/timm/maxvit_xlarge_tf_384.in21k_ft_in1k) |
| maxvit_base_tf_512.in21k_ft_in1k   |   88.2 |         119.9 |  138   |   704   | [link](https://huggingface.co/timm/maxvit_base_tf_512.in21k_ft_in1k)   |
| maxvit_large_tf_512.in21k_ft_in1k  |   88   |         212.3 |  244.8 |   942.2 | [link](https://huggingface.co/timm/maxvit_large_tf_512.in21k_ft_in1k)  |
| maxvit_large_tf_384.in21k_ft_in1k  |   88   |         212   |  132.6 |   445.8 | [link](https://huggingface.co/timm/maxvit_large_tf_384.in21k_ft_in1k)  |
| maxvit_base_tf_384.in21k_ft_in1k   |   87.9 |         119.6 |   73.8 |   332.9 | [link](https://huggingface.co/timm/maxvit_base_tf_384.in21k_ft_in1k)   |
| maxvit_base_tf_512.in1k            |   86.6 |         119.9 |  138   |   704   | [link](https://huggingface.co/timm/maxvit_base_tf_512.in1k)            |
| maxvit_large_tf_512.in1k           |   86.5 |         212.3 |  244.8 |   942.2 | [link](https://huggingface.co/timm/maxvit_large_tf_512.in1k)           |
| maxvit_base_tf_384.in1k            |   86.3 |         119.6 |   73.8 |   332.9 | [link](https://huggingface.co/timm/maxvit_base_tf_384.in1k)            |
| maxvit_large_tf_384.in1k           |   86.2 |         212   |  132.6 |   445.8 | [link](https://huggingface.co/timm/maxvit_large_tf_384.in1k)           |
| maxvit_small_tf_512.in1k           |   86.1 |          69.1 |   67.3 |   383.8 | [link](https://huggingface.co/timm/maxvit_small_tf_512.in1k)           |
| maxvit_tiny_tf_512.in1k            |   85.7 |          31   |   33.5 |   257.6 | [link](https://huggingface.co/timm/maxvit_tiny_tf_512.in1k)            |
| maxvit_small_tf_384.in1k           |   85.5 |          69   |   35.9 |   183.6 | [link](https://huggingface.co/timm/maxvit_small_tf_384.in1k)           |
| maxvit_tiny_tf_384.in1k            |   85.1 |          31   |   17.5 |   123.4 | [link](https://huggingface.co/timm/maxvit_tiny_tf_384.in1k)            |
| maxvit_large_tf_224.in1k           |   84.9 |         211.8 |   43.7 |   127.4 | [link](https://huggingface.co/timm/maxvit_large_tf_224.in1k)           |
| maxvit_base_tf_224.in1k            |   84.9 |         119.5 |   24   |    95   | [link](https://huggingface.co/timm/maxvit_base_tf_224.in1k)            |
| maxvit_small_tf_224.in1k           |   84.4 |          68.9 |   11.7 |    53.2 | [link](https://huggingface.co/timm/maxvit_small_tf_224.in1k)           |
| maxvit_tiny_tf_224.in1k            |   83.4 |          30.9 |    5.6 |    35.8 | [link](https://huggingface.co/timm/maxvit_tiny_tf_224.in1k)            |

### Oct 15, 2022
* Train and validation script enhancements
* Non-GPU (ie CPU) device support
* SLURM compatibility for train script
* HF datasets support (via ReaderHfds)
* TFDS/WDS dataloading improvements (sample padding/wrap for distributed use fixed wrt sample count estimate)
* in_chans !=3 support for scripts / loader
* Adan optimizer
* Can enable per-step LR scheduling via args
* Dataset 'parsers' renamed to 'readers', more descriptive of purpose
* AMP args changed, APEX via `--amp-impl apex`, bfloat16 supportedf via `--amp-dtype bfloat16`
* main branch switched to 0.7.x version, 0.6x forked for stable release of weight only adds
* master -> main branch rename

### Oct 10, 2022
* More weights in `maxxvit` series, incl first ConvNeXt block based `coatnext` and `maxxvit` experiments:
  * `coatnext_nano_rw_224` - 82.0 @ 224 (G) -- (uses ConvNeXt conv block, no BatchNorm)
  * `maxxvit_rmlp_nano_rw_256` - 83.0 @ 256, 83.7 @ 320  (G) (uses ConvNeXt conv block, no BN)
  * `maxvit_rmlp_small_rw_224` - 84.5 @ 224, 85.1 @ 320 (G)
  * `maxxvit_rmlp_small_rw_256` - 84.6 @ 256, 84.9 @ 288 (G) -- could be trained better, hparams need tuning (uses ConvNeXt block, no BN)
  * `coatnet_rmlp_2_rw_224` - 84.6 @ 224, 85 @ 320  (T)
  * NOTE: official MaxVit weights (in1k) have been released at https://github.com/google-research/maxvit -- some extra work is needed to port and adapt since my impl was created independently of theirs and has a few small differences + the whole TF same padding fun.
  
### Sept 23, 2022
* LAION-2B CLIP image towers supported as pretrained backbones for fine-tune or features (no classifier)
  * vit_base_patch32_224_clip_laion2b
  * vit_large_patch14_224_clip_laion2b
  * vit_huge_patch14_224_clip_laion2b
  * vit_giant_patch14_224_clip_laion2b

### Sept 7, 2022
* Hugging Face [`timm` docs](https://huggingface.co/docs/hub/timm) home now exists, look for more here in the future
* Add BEiT-v2 weights for base and large 224x224 models from https://github.com/microsoft/unilm/tree/master/beit2
* Add more weights in `maxxvit` series incl a `pico` (7.5M params, 1.9 GMACs), two `tiny` variants:
  * `maxvit_rmlp_pico_rw_256` - 80.5 @ 256, 81.3 @ 320  (T)
  * `maxvit_tiny_rw_224` - 83.5 @ 224 (G)
  * `maxvit_rmlp_tiny_rw_256` - 84.2 @ 256, 84.8 @ 320 (T)

### Aug 29, 2022
* MaxVit window size scales with img_size by default. Add new RelPosMlp MaxViT weight that leverages this:
  * `maxvit_rmlp_nano_rw_256` - 83.0 @ 256, 83.6 @ 320  (T)

### Aug 26, 2022
* CoAtNet (https://arxiv.org/abs/2106.04803) and MaxVit (https://arxiv.org/abs/2204.01697) `timm` original models
  * both found in [`maxxvit.py`](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/maxxvit.py) model def, contains numerous experiments outside scope of original papers
  * an unfinished Tensorflow version from MaxVit authors can be found https://github.com/google-research/maxvit
* Initial CoAtNet and MaxVit timm pretrained weights (working on more):
  * `coatnet_nano_rw_224` - 81.7 @ 224  (T)
  * `coatnet_rmlp_nano_rw_224` - 82.0 @ 224, 82.8 @ 320 (T)
  * `coatnet_0_rw_224` - 82.4  (T)  -- NOTE timm '0' coatnets have 2 more 3rd stage blocks
  * `coatnet_bn_0_rw_224` - 82.4  (T)
  * `maxvit_nano_rw_256` - 82.9 @ 256  (T)
  * `coatnet_rmlp_1_rw_224` - 83.4 @ 224, 84 @ 320  (T)
  * `coatnet_1_rw_224` - 83.6 @ 224 (G) 
  * (T) = TPU trained with `bits_and_tpu` branch training code, (G) = GPU trained
* GCVit (weights adapted from https://github.com/NVlabs/GCVit, code 100% `timm` re-write for license purposes)
* MViT-V2 (multi-scale vit, adapted from https://github.com/facebookresearch/mvit)
* EfficientFormer (adapted from https://github.com/snap-research/EfficientFormer)
* PyramidVisionTransformer-V2 (adapted from https://github.com/whai362/PVT)
* 'Fast Norm' support for LayerNorm and GroupNorm that avoids float32 upcast w/ AMP (uses APEX LN if available for further boost)


### Aug 15, 2022
* ConvNeXt atto weights added
  * `convnext_atto` - 75.7 @ 224, 77.0 @ 288
  * `convnext_atto_ols` - 75.9  @ 224, 77.2 @ 288

### Aug 5, 2022
* More custom ConvNeXt smaller model defs with weights 
  * `convnext_femto` - 77.5 @ 224, 78.7 @ 288
  * `convnext_femto_ols` - 77.9  @ 224, 78.9 @ 288
  * `convnext_pico` - 79.5 @ 224, 80.4 @ 288
  * `convnext_pico_ols` - 79.5 @ 224, 80.5 @ 288
  * `convnext_nano_ols` - 80.9 @ 224, 81.6 @ 288
* Updated EdgeNeXt to improve ONNX export, add new base variant and weights from original (https://github.com/mmaaz60/EdgeNeXt)

### July 28, 2022
* Add freshly minted DeiT-III Medium (width=512, depth=12, num_heads=8) model weights. Thanks [Hugo Touvron](https://github.com/TouvronHugo)!

### July 27, 2022
* All runtime benchmark and validation result csv files are up-to-date!
* A few more weights & model defs added:
  * `darknetaa53` -  79.8 @ 256, 80.5 @ 288
  * `convnext_nano` - 80.8 @ 224, 81.5 @ 288
  * `cs3sedarknet_l` - 81.2 @ 256, 81.8 @ 288
  * `cs3darknet_x` - 81.8 @ 256, 82.2 @ 288
  * `cs3sedarknet_x` - 82.2 @ 256, 82.7 @ 288
  * `cs3edgenet_x` - 82.2 @ 256, 82.7 @ 288
  * `cs3se_edgenet_x` - 82.8 @ 256, 83.5 @ 320
* `cs3*` weights above all trained on TPU w/ `bits_and_tpu` branch. Thanks to TRC program!
* Add output_stride=8 and 16 support to ConvNeXt (dilation)
* deit3 models not being able to resize pos_emb fixed
* Version 0.6.7 PyPi release (/w above bug fixes and new weighs since 0.6.5)

### July 8, 2022
More models, more fixes
* Official research models (w/ weights) added:
  * EdgeNeXt from (https://github.com/mmaaz60/EdgeNeXt)
  * MobileViT-V2 from (https://github.com/apple/ml-cvnets)
  * DeiT III (Revenge of the ViT) from (https://github.com/facebookresearch/deit)
* My own models:
  * Small `ResNet` defs added by request with 1 block repeats for both basic and bottleneck (resnet10 and resnet14)
  * `CspNet` refactored with dataclass config, simplified CrossStage3 (`cs3`) option. These are closer to YOLO-v5+ backbone defs.
  * More relative position vit fiddling. Two `srelpos` (shared relative position) models trained, and a medium w/ class token.
  * Add an alternate downsample mode to EdgeNeXt and train a `small` model. Better than original small, but not their new USI trained weights.
* My own model weight results (all ImageNet-1k training)
  * `resnet10t` - 66.5 @ 176, 68.3 @ 224
  * `resnet14t` - 71.3 @ 176, 72.3 @ 224
  * `resnetaa50` - 80.6 @ 224 , 81.6 @ 288
  * `darknet53` -  80.0 @ 256, 80.5 @ 288
  * `cs3darknet_m` - 77.0 @ 256, 77.6 @ 288
  * `cs3darknet_focus_m` - 76.7 @ 256, 77.3 @ 288
  * `cs3darknet_l` - 80.4 @ 256, 80.9 @ 288
  * `cs3darknet_focus_l` - 80.3 @ 256, 80.9 @ 288
  * `vit_srelpos_small_patch16_224` - 81.1 @ 224, 82.1 @ 320
  * `vit_srelpos_medium_patch16_224` - 82.3 @ 224, 83.1 @ 320
  * `vit_relpos_small_patch16_cls_224` - 82.6 @ 224, 83.6 @ 320
  * `edgnext_small_rw` - 79.6 @ 224, 80.4 @ 320
* `cs3`, `darknet`, and `vit_*relpos` weights above all trained on TPU thanks to TRC program! Rest trained on overheating GPUs.
* Hugging Face Hub support fixes verified, demo notebook TBA
* Pretrained weights / configs can be loaded externally (ie from local disk) w/ support for head adaptation.
* Add support to change image extensions scanned by `timm` datasets/parsers. See (https://github.com/rwightman/pytorch-image-models/pull/1274#issuecomment-1178303103)
* Default ConvNeXt LayerNorm impl to use `F.layer_norm(x.permute(0, 2, 3, 1), ...).permute(0, 3, 1, 2)` via `LayerNorm2d` in all cases. 
  * a bit slower than previous custom impl on some hardware (ie Ampere w/ CL), but overall fewer regressions across wider HW / PyTorch version ranges. 
  * previous impl exists as `LayerNormExp2d` in `models/layers/norm.py`
* Numerous bug fixes
* Currently testing for imminent PyPi 0.6.x release
* LeViT pretraining of larger models still a WIP, they don't train well / easily without distillation. Time to add distill support (finally)?
* ImageNet-22k weight training + finetune ongoing, work on multi-weight support (slowly) chugging along (there are a LOT of weights, sigh) ...

### May 13, 2022
* Official Swin-V2 models and weights added from (https://github.com/microsoft/Swin-Transformer). Cleaned up to support torchscript.
* Some refactoring for existing `timm` Swin-V2-CR impl, will likely do a bit more to bring parts closer to official and decide whether to merge some aspects.
* More Vision Transformer relative position / residual post-norm experiments (all trained on TPU thanks to TRC program)
  * `vit_relpos_small_patch16_224` - 81.5 @ 224, 82.5 @ 320 -- rel pos, layer scale, no class token, avg pool
  * `vit_relpos_medium_patch16_rpn_224` - 82.3 @ 224, 83.1 @ 320 -- rel pos + res-post-norm, no class token, avg pool
  * `vit_relpos_medium_patch16_224` - 82.5 @ 224, 83.3 @ 320 -- rel pos, layer scale, no class token, avg pool
  * `vit_relpos_base_patch16_gapcls_224` - 82.8 @ 224, 83.9 @ 320 -- rel pos, layer scale, class token, avg pool (by mistake)
* Bring 512 dim, 8-head 'medium' ViT model variant back to life (after using in a pre DeiT 'small' model for first ViT impl back in 2020)
* Add ViT relative position support for switching btw existing impl and some additions in official Swin-V2 impl for future trials
* Sequencer2D impl (https://arxiv.org/abs/2205.01972), added via PR from author (https://github.com/okojoalg)

### May 2, 2022
* Vision Transformer experiments adding Relative Position (Swin-V2 log-coord) (`vision_transformer_relpos.py`) and Residual Post-Norm branches (from Swin-V2) (`vision_transformer*.py`)
  * `vit_relpos_base_patch32_plus_rpn_256` - 79.5 @ 256, 80.6 @ 320 -- rel pos + extended width + res-post-norm, no class token, avg pool
  * `vit_relpos_base_patch16_224` - 82.5 @ 224, 83.6 @ 320 -- rel pos, layer scale, no class token, avg pool
  * `vit_base_patch16_rpn_224` - 82.3 @ 224 -- rel pos + res-post-norm, no class token, avg pool
* Vision Transformer refactor to remove representation layer that was only used in initial vit and rarely used since with newer pretrain (ie `How to Train Your ViT`)
* `vit_*` models support removal of class token, use of global average pool, use of fc_norm (ala beit, mae).

### April 22, 2022
* `timm` models are now officially supported in [fast.ai](https://www.fast.ai/)! Just in time for the new Practical Deep Learning course. `timmdocs` documentation link updated to [timm.fast.ai](http://timm.fast.ai/).
* Two more model weights added in the TPU trained [series](https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-tpu-weights). Some In22k pretrain still in progress.
  * `seresnext101d_32x8d` - 83.69 @ 224, 84.35 @ 288
  * `seresnextaa101d_32x8d` (anti-aliased w/ AvgPool2d) - 83.85 @ 224, 84.57 @ 288

### March 23, 2022
* Add `ParallelBlock` and `LayerScale` option to base vit models to support model configs in [Three things everyone should know about ViT](https://arxiv.org/abs/2203.09795)
* `convnext_tiny_hnf` (head norm first) weights trained with (close to) A2 recipe, 82.2% top-1, could do better with more epochs.

### March 21, 2022
* Merge `norm_norm_norm`. **IMPORTANT** this update for a coming 0.6.x release will likely de-stabilize the master branch for a while. Branch [`0.5.x`](https://github.com/rwightman/pytorch-image-models/tree/0.5.x) or a previous 0.5.x release can be used if stability is required.
* Significant weights update (all TPU trained) as described in this [release](https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-tpu-weights)
  * `regnety_040` - 82.3 @ 224, 82.96 @ 288
  * `regnety_064` - 83.0 @ 224, 83.65 @ 288
  * `regnety_080` - 83.17 @ 224, 83.86 @ 288
  * `regnetv_040` - 82.44 @ 224, 83.18 @ 288   (timm pre-act)
  * `regnetv_064` - 83.1 @ 224, 83.71 @ 288   (timm pre-act)
  * `regnetz_040` - 83.67 @ 256, 84.25 @ 320
  * `regnetz_040h` - 83.77 @ 256, 84.5 @ 320 (w/ extra fc in head)
  * `resnetv2_50d_gn` - 80.8 @ 224, 81.96 @ 288 (pre-act GroupNorm)
  * `resnetv2_50d_evos` 80.77 @ 224, 82.04 @ 288 (pre-act EvoNormS)
  * `regnetz_c16_evos`  - 81.9 @ 256, 82.64 @ 320 (EvoNormS)
  * `regnetz_d8_evos`  - 83.42 @ 256, 84.04 @ 320 (EvoNormS)
  * `xception41p` - 82 @ 299   (timm pre-act)
  * `xception65` -  83.17 @ 299
  * `xception65p` -  83.14 @ 299   (timm pre-act)
  * `resnext101_64x4d` - 82.46 @ 224, 83.16 @ 288
  * `seresnext101_32x8d` - 83.57 @ 224, 84.270 @ 288
  * `resnetrs200` - 83.85 @ 256, 84.44 @ 320
* HuggingFace hub support fixed w/ initial groundwork for allowing alternative 'config sources' for pretrained model definitions and weights (generic local file / remote url support soon)
* SwinTransformer-V2 implementation added. Submitted by [Christoph Reich](https://github.com/ChristophReich1996). Training experiments and model changes by myself are ongoing so expect compat breaks.
* Swin-S3 (AutoFormerV2) models / weights added from https://github.com/microsoft/Cream/tree/main/AutoFormerV2
* MobileViT models w/ weights adapted from https://github.com/apple/ml-cvnets
* PoolFormer models w/ weights adapted from https://github.com/sail-sg/poolformer
* VOLO models w/ weights adapted from https://github.com/sail-sg/volo
* Significant work experimenting with non-BatchNorm norm layers such as EvoNorm, FilterResponseNorm, GroupNorm, etc
* Enhance support for alternate norm + act ('NormAct') layers added to a number of models, esp EfficientNet/MobileNetV3, RegNet, and aligned Xception
* Grouped conv support added to EfficientNet family
* Add 'group matching' API to all models to allow grouping model parameters for application of 'layer-wise' LR decay, lr scale added to LR scheduler
* Gradient checkpointing support added to many models
* `forward_head(x, pre_logits=False)` fn added to all models to allow separate calls of `forward_features` + `forward_head`
* All vision transformer and vision MLP models update to return non-pooled / non-token selected features from `foward_features`, for consistency with CNN models, token selection or pooling now applied in `forward_head`

### Feb 2, 2022
* [Chris Hughes](https://github.com/Chris-hughes10) posted an exhaustive run through of `timm` on his blog yesterday. Well worth a read. [Getting Started with PyTorch Image Models (timm): A Practitioner’s Guide](https://towardsdatascience.com/getting-started-with-pytorch-image-models-timm-a-practitioners-guide-4e77b4bf9055)
* I'm currently prepping to merge the `norm_norm_norm` branch back to master (ver 0.6.x) in next week or so.
  * The changes are more extensive than usual and may destabilize and break some model API use (aiming for full backwards compat). So, beware `pip install git+https://github.com/rwightman/pytorch-image-models` installs!
  * `0.5.x` releases and a `0.5.x` branch will remain stable with a cherry pick or two until dust clears. Recommend sticking to pypi install for a bit if you want stable.

### Jan 14, 2022
* Version 0.5.4 w/ release to be pushed to pypi. It's been a while since last pypi update and riskier changes will be merged to main branch soon....
* Add ConvNeXT models /w weights from official impl (https://github.com/facebookresearch/ConvNeXt), a few perf tweaks, compatible with timm features
* Tried training a few small (~1.8-3M param) / mobile optimized models, a few are good so far, more on the way...
  * `mnasnet_small` - 65.6 top-1
  * `mobilenetv2_050` - 65.9
  * `lcnet_100/075/050` - 72.1 / 68.8 / 63.1
  * `semnasnet_075` - 73
  * `fbnetv3_b/d/g` - 79.1 / 79.7 / 82.0
* TinyNet models added by [rsomani95](https://github.com/rsomani95)
* LCNet added via MobileNetV3 architecture