peldrak commited on
Commit
254f35b
·
verified ·
1 Parent(s): 06105fe

End of training

Browse files
README.md CHANGED
@@ -1,201 +1,89 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
-
201
-
 
1
  ---
2
+ license: other
3
+ base_model: nvidia/segformer-b5-finetuned-cityscapes-1024-1024
4
+ tags:
5
+ - vision
6
+ - image-segmentation
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: segformer-b5-cityscapes-finetuned-coastTrain
10
+ results: []
11
  ---
12
 
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # segformer-b5-cityscapes-finetuned-coastTrain
17
+
18
+ This model is a fine-tuned version of [nvidia/segformer-b5-finetuned-cityscapes-1024-1024](https://huggingface.co/nvidia/segformer-b5-finetuned-cityscapes-1024-1024) on the peldrak/coastTrain dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.4253
21
+ - Mean Iou: 0.5585
22
+ - Mean Accuracy: 0.6197
23
+ - Overall Accuracy: 0.8740
24
+ - Accuracy Water: 0.9765
25
+ - Accuracy Whitewater: 0.0159
26
+ - Accuracy Sediment: 0.6122
27
+ - Accuracy Other Natural Terrain: 0.0
28
+ - Accuracy Vegetation: 0.9255
29
+ - Accuracy Development: 0.8619
30
+ - Accuracy Unknown: 0.9457
31
+ - Iou Water: 0.8021
32
+ - Iou Whitewater: 0.0158
33
+ - Iou Sediment: 0.5787
34
+ - Iou Other Natural Terrain: 0.0
35
+ - Iou Vegetation: 0.8069
36
+ - Iou Development: 0.7835
37
+ - Iou Unknown: 0.9224
38
+ - F1 Score: 0.8596
39
+
40
+ ## Model description
41
+
42
+ More information needed
43
+
44
+ ## Intended uses & limitations
45
+
46
+ More information needed
47
+
48
+ ## Training and evaluation data
49
+
50
+ More information needed
51
+
52
+ ## Training procedure
53
+
54
+ ### Training hyperparameters
55
+
56
+ The following hyperparameters were used during training:
57
+ - learning_rate: 6e-05
58
+ - train_batch_size: 4
59
+ - eval_batch_size: 4
60
+ - seed: 42
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - num_epochs: 20
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Water | Accuracy Whitewater | Accuracy Sediment | Accuracy Other Natural Terrain | Accuracy Vegetation | Accuracy Development | Accuracy Unknown | Iou Water | Iou Whitewater | Iou Sediment | Iou Other Natural Terrain | Iou Vegetation | Iou Development | Iou Unknown | F1 Score |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:--------------:|:-------------------:|:-----------------:|:------------------------------:|:-------------------:|:--------------------:|:----------------:|:---------:|:--------------:|:------------:|:-------------------------:|:--------------:|:---------------:|:-----------:|:--------:|
69
+ | 1.7218 | 0.16 | 20 | 1.5229 | 0.3639 | 0.4826 | 0.6959 | 0.6530 | 0.0033 | 0.6952 | 0.0067 | 0.8127 | 0.2824 | 0.9249 | 0.5955 | 0.0030 | 0.3817 | 0.0063 | 0.5740 | 0.2453 | 0.7415 | 0.6829 |
70
+ | 1.3084 | 0.31 | 40 | 1.1275 | 0.4131 | 0.5060 | 0.7566 | 0.7956 | 0.0011 | 0.5967 | 0.0 | 0.9496 | 0.3131 | 0.8858 | 0.6821 | 0.0011 | 0.4697 | 0.0 | 0.6092 | 0.2891 | 0.8406 | 0.7379 |
71
+ | 1.1538 | 0.47 | 60 | 0.8108 | 0.4722 | 0.5593 | 0.8123 | 0.8802 | 0.0001 | 0.6946 | 0.0 | 0.9169 | 0.5078 | 0.9153 | 0.7833 | 0.0001 | 0.4768 | 0.0 | 0.7188 | 0.4376 | 0.8889 | 0.8002 |
72
+ | 0.9791 | 0.62 | 80 | 0.6995 | 0.5264 | 0.6143 | 0.8518 | 0.9168 | 0.0000 | 0.7471 | 0.0 | 0.8479 | 0.8453 | 0.9433 | 0.8301 | 0.0000 | 0.5727 | 0.0 | 0.7406 | 0.6249 | 0.9164 | 0.8421 |
73
+ | 1.0426 | 0.78 | 100 | 0.5931 | 0.5280 | 0.6063 | 0.8523 | 0.8932 | 0.0003 | 0.6361 | 0.0 | 0.9550 | 0.8282 | 0.9309 | 0.8097 | 0.0003 | 0.5481 | 0.0 | 0.7440 | 0.6697 | 0.9243 | 0.8402 |
74
+ | 0.8008 | 0.93 | 120 | 0.4687 | 0.5485 | 0.6225 | 0.8706 | 0.9263 | 0.0 | 0.7444 | 0.0 | 0.9248 | 0.8212 | 0.9410 | 0.8404 | 0.0 | 0.5924 | 0.0 | 0.7871 | 0.6857 | 0.9337 | 0.8595 |
75
+ | 1.0298 | 1.09 | 140 | 0.4732 | 0.5527 | 0.6244 | 0.8726 | 0.9421 | 0.0000 | 0.8164 | 0.0 | 0.9047 | 0.7891 | 0.9185 | 0.8289 | 0.0000 | 0.6400 | 0.0 | 0.7976 | 0.6991 | 0.9036 | 0.8617 |
76
+ | 0.4902 | 1.24 | 160 | 0.3911 | 0.5713 | 0.6310 | 0.8868 | 0.9694 | 0.0 | 0.7543 | 0.0 | 0.9348 | 0.8241 | 0.9344 | 0.8366 | 0.0 | 0.6816 | 0.0 | 0.8102 | 0.7408 | 0.9295 | 0.8744 |
77
+ | 0.8204 | 1.4 | 180 | 0.4865 | 0.5210 | 0.5894 | 0.8522 | 0.9765 | 0.0 | 0.4534 | 0.0 | 0.9521 | 0.8103 | 0.9336 | 0.7833 | 0.0 | 0.4303 | 0.0 | 0.7921 | 0.7097 | 0.9313 | 0.8322 |
78
+ | 1.1865 | 1.55 | 200 | 0.3980 | 0.5668 | 0.6352 | 0.8838 | 0.9644 | 0.0000 | 0.7632 | 0.0 | 0.8985 | 0.8816 | 0.9385 | 0.8442 | 0.0000 | 0.6333 | 0.0 | 0.8133 | 0.7431 | 0.9338 | 0.8722 |
79
+ | 0.5676 | 1.71 | 220 | 0.3955 | 0.5598 | 0.6352 | 0.8750 | 0.9299 | 0.0 | 0.8440 | 0.0 | 0.9085 | 0.8890 | 0.8747 | 0.8160 | 0.0 | 0.6601 | 0.0 | 0.8209 | 0.7499 | 0.8721 | 0.8647 |
80
+ | 0.9343 | 1.86 | 240 | 0.3969 | 0.5809 | 0.6445 | 0.8944 | 0.9593 | 0.0001 | 0.8201 | 0.0 | 0.9120 | 0.8658 | 0.9539 | 0.8589 | 0.0001 | 0.6678 | 0.0 | 0.8327 | 0.7744 | 0.9326 | 0.8829 |
81
+ | 0.5811 | 2.02 | 260 | 0.4253 | 0.5585 | 0.6197 | 0.8740 | 0.9765 | 0.0159 | 0.6122 | 0.0 | 0.9255 | 0.8619 | 0.9457 | 0.8021 | 0.0158 | 0.5787 | 0.0 | 0.8069 | 0.7835 | 0.9224 | 0.8596 |
82
+
83
+
84
+ ### Framework versions
85
+
86
+ - Transformers 4.37.0
87
+ - Pytorch 2.1.2
88
+ - Datasets 2.18.0
89
+ - Tokenizers 0.15.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "nvidia/segformer-b5-finetuned-cityscapes-1024-1024",
3
+ "architectures": [
4
+ "SegformerForSemanticSegmentation"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "classifier_dropout_prob": 0.1,
8
+ "decoder_hidden_size": 768,
9
+ "depths": [
10
+ 3,
11
+ 6,
12
+ 40,
13
+ 3
14
+ ],
15
+ "downsampling_rates": [
16
+ 1,
17
+ 4,
18
+ 8,
19
+ 16
20
+ ],
21
+ "drop_path_rate": 0.1,
22
+ "hidden_act": "gelu",
23
+ "hidden_dropout_prob": 0.0,
24
+ "hidden_sizes": [
25
+ 64,
26
+ 128,
27
+ 320,
28
+ 512
29
+ ],
30
+ "id2label": {
31
+ "0": "water",
32
+ "1": "whitewater",
33
+ "2": "sediment",
34
+ "3": "other_natural_terrain",
35
+ "4": "vegetation",
36
+ "5": "development",
37
+ "6": "unknown"
38
+ },
39
+ "image_size": 224,
40
+ "initializer_range": 0.02,
41
+ "label2id": {
42
+ "development": 5,
43
+ "other_natural_terrain": 3,
44
+ "sediment": 2,
45
+ "unknown": 6,
46
+ "vegetation": 4,
47
+ "water": 0,
48
+ "whitewater": 1
49
+ },
50
+ "layer_norm_eps": 1e-06,
51
+ "mlp_ratios": [
52
+ 4,
53
+ 4,
54
+ 4,
55
+ 4
56
+ ],
57
+ "model_type": "segformer",
58
+ "num_attention_heads": [
59
+ 1,
60
+ 2,
61
+ 5,
62
+ 8
63
+ ],
64
+ "num_channels": 3,
65
+ "num_encoder_blocks": 4,
66
+ "patch_sizes": [
67
+ 7,
68
+ 3,
69
+ 3,
70
+ 3
71
+ ],
72
+ "reshape_last_stage": true,
73
+ "semantic_loss_ignore_index": 255,
74
+ "sr_ratios": [
75
+ 8,
76
+ 4,
77
+ 2,
78
+ 1
79
+ ],
80
+ "strides": [
81
+ 4,
82
+ 2,
83
+ 2,
84
+ 2
85
+ ],
86
+ "torch_dtype": "float32",
87
+ "transformers_version": "4.37.0"
88
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da17431580bca814cedacc2c00bce5a9541db71a8ae4a6f9c1c475e56ff8d144
3
+ size 338543820
runs/Mar04_10-20-38_8c6b454fb8be/events.out.tfevents.1709547642.8c6b454fb8be.26.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10776cf617d330ef88b82bb28a36f1a561cc89810509f72f484d7f64aeb63fbf
3
+ size 63324
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b80406e8d0d254636f9cab73cd490826302bd31476ae91c10e8e9d63c528d98
3
+ size 4792