File size: 24,083 Bytes
d167a6f 07ab89d d167a6f 07ab89d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
---
license: other
base_model: nvidia/segformer-b5-finetuned-ade-640-640
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-b5-ade-finetuned-coastTrain
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b5-ade-finetuned-coastTrain
This model is a fine-tuned version of [nvidia/segformer-b5-finetuned-ade-640-640](https://huggingface.co/nvidia/segformer-b5-finetuned-ade-640-640) on the peldrak/coastTrain dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3412
- Mean Iou: 0.7737
- Mean Accuracy: 0.8545
- Overall Accuracy: 0.9252
- Accuracy Water: 0.9680
- Accuracy Whitewater: 0.6271
- Accuracy Sediment: 0.8745
- Accuracy Other Natural Terrain: 0.8030
- Accuracy Vegetation: 0.9108
- Accuracy Development: 0.8296
- Accuracy Unknown: 0.9682
- Iou Water: 0.9285
- Iou Whitewater: 0.5294
- Iou Sediment: 0.8047
- Iou Other Natural Terrain: 0.6748
- Iou Vegetation: 0.8430
- Iou Development: 0.7686
- Iou Unknown: 0.8673
- F1 Score: 0.9245
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Water | Accuracy Whitewater | Accuracy Sediment | Accuracy Other Natural Terrain | Accuracy Vegetation | Accuracy Development | Accuracy Unknown | Iou Water | Iou Whitewater | Iou Sediment | Iou Other Natural Terrain | Iou Vegetation | Iou Development | Iou Unknown | F1 Score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:--------------:|:-------------------:|:-----------------:|:------------------------------:|:-------------------:|:--------------------:|:----------------:|:---------:|:--------------:|:------------:|:-------------------------:|:--------------:|:---------------:|:-----------:|:--------:|
| 1.6133 | 0.16 | 20 | 1.4728 | 0.4356 | 0.5582 | 0.7600 | 0.8440 | 0.0000 | 0.5434 | 0.2624 | 0.8192 | 0.5884 | 0.8502 | 0.7387 | 0.0000 | 0.4669 | 0.1171 | 0.5786 | 0.4642 | 0.6833 | 0.7532 |
| 1.4431 | 0.31 | 40 | 1.0911 | 0.4768 | 0.5735 | 0.8206 | 0.9076 | 0.0 | 0.7765 | 0.0006 | 0.9006 | 0.6686 | 0.7608 | 0.8394 | 0.0 | 0.5832 | 0.0006 | 0.6596 | 0.4954 | 0.7597 | 0.8114 |
| 1.5275 | 0.47 | 60 | 0.7874 | 0.5222 | 0.5966 | 0.8585 | 0.9553 | 0.0 | 0.7752 | 0.0 | 0.9101 | 0.6629 | 0.8727 | 0.8565 | 0.0 | 0.6318 | 0.0 | 0.7222 | 0.5763 | 0.8688 | 0.8454 |
| 1.1583 | 0.62 | 80 | 0.7113 | 0.5128 | 0.6001 | 0.8440 | 0.8830 | 0.0 | 0.8460 | 0.0 | 0.9323 | 0.6588 | 0.8809 | 0.8283 | 0.0 | 0.5762 | 0.0 | 0.7216 | 0.5873 | 0.8762 | 0.8348 |
| 0.9739 | 0.78 | 100 | 0.6059 | 0.5450 | 0.6229 | 0.8733 | 0.9534 | 0.0 | 0.8246 | 0.0 | 0.8876 | 0.8146 | 0.8803 | 0.8703 | 0.0 | 0.6770 | 0.0 | 0.7506 | 0.6408 | 0.8760 | 0.8615 |
| 0.838 | 0.93 | 120 | 0.5250 | 0.5557 | 0.6273 | 0.8800 | 0.9679 | 0.0 | 0.8549 | 0.0 | 0.8665 | 0.8087 | 0.8934 | 0.8677 | 0.0 | 0.6840 | 0.0 | 0.7703 | 0.6847 | 0.8830 | 0.8674 |
| 0.5815 | 1.09 | 140 | 0.4973 | 0.5528 | 0.6247 | 0.8788 | 0.9630 | 0.0 | 0.7933 | 0.0 | 0.9010 | 0.8217 | 0.8939 | 0.8812 | 0.0 | 0.6938 | 0.0 | 0.7379 | 0.6730 | 0.8837 | 0.8663 |
| 0.5949 | 1.24 | 160 | 0.4460 | 0.5538 | 0.6314 | 0.8813 | 0.9621 | 0.0 | 0.8044 | 0.0 | 0.8840 | 0.8692 | 0.9000 | 0.8930 | 0.0 | 0.7062 | 0.0 | 0.7445 | 0.6487 | 0.8843 | 0.8695 |
| 1.089 | 1.4 | 180 | 0.4080 | 0.5666 | 0.6331 | 0.8889 | 0.9680 | 0.0 | 0.8240 | 0.0 | 0.9200 | 0.8256 | 0.8940 | 0.8902 | 0.0 | 0.7323 | 0.0 | 0.7603 | 0.6986 | 0.8846 | 0.8762 |
| 0.959 | 1.55 | 200 | 0.3853 | 0.5675 | 0.6403 | 0.8901 | 0.9611 | 0.0 | 0.8645 | 0.0 | 0.8983 | 0.8616 | 0.8964 | 0.8975 | 0.0 | 0.7192 | 0.0 | 0.7672 | 0.7035 | 0.8848 | 0.8780 |
| 0.577 | 1.71 | 220 | 0.3735 | 0.5683 | 0.6338 | 0.8902 | 0.9760 | 0.0 | 0.7882 | 0.0009 | 0.9125 | 0.8542 | 0.9047 | 0.8780 | 0.0 | 0.6862 | 0.0009 | 0.8013 | 0.7191 | 0.8927 | 0.8769 |
| 0.9331 | 1.86 | 240 | 0.3605 | 0.5705 | 0.6464 | 0.8943 | 0.9648 | 0.0 | 0.8650 | 0.0 | 0.8805 | 0.8960 | 0.9181 | 0.9010 | 0.0 | 0.7210 | 0.0 | 0.7994 | 0.6841 | 0.8879 | 0.8823 |
| 0.5132 | 2.02 | 260 | 0.3680 | 0.5826 | 0.6573 | 0.8884 | 0.9366 | 0.0 | 0.8773 | 0.1041 | 0.9113 | 0.8567 | 0.9152 | 0.8694 | 0.0 | 0.6984 | 0.1041 | 0.8038 | 0.7009 | 0.9013 | 0.8784 |
| 0.3977 | 2.17 | 280 | 0.3233 | 0.5814 | 0.6498 | 0.9018 | 0.9623 | 0.0 | 0.8900 | 0.0 | 0.9162 | 0.8487 | 0.9313 | 0.9052 | 0.0 | 0.7370 | 0.0 | 0.8210 | 0.7242 | 0.8824 | 0.8891 |
| 0.6267 | 2.33 | 300 | 0.3394 | 0.5998 | 0.6646 | 0.8980 | 0.9735 | 0.0 | 0.8603 | 0.1726 | 0.9086 | 0.8262 | 0.9110 | 0.8862 | 0.0 | 0.7533 | 0.1726 | 0.8293 | 0.7044 | 0.8531 | 0.8871 |
| 0.7394 | 2.48 | 320 | 0.3483 | 0.5776 | 0.6508 | 0.8996 | 0.9566 | 0.0 | 0.9175 | 0.0028 | 0.9041 | 0.8487 | 0.9261 | 0.9054 | 0.0 | 0.7360 | 0.0028 | 0.8317 | 0.7110 | 0.8563 | 0.8874 |
| 0.4013 | 2.64 | 340 | 0.3393 | 0.5746 | 0.6458 | 0.8987 | 0.9734 | 0.0 | 0.8959 | 0.0001 | 0.8831 | 0.8420 | 0.9264 | 0.9071 | 0.0 | 0.7357 | 0.0001 | 0.8252 | 0.7013 | 0.8525 | 0.8859 |
| 0.3434 | 2.79 | 360 | 0.3745 | 0.6263 | 0.6907 | 0.9002 | 0.9516 | 0.0003 | 0.8148 | 0.3544 | 0.9583 | 0.8127 | 0.9431 | 0.9068 | 0.0003 | 0.7490 | 0.3541 | 0.7943 | 0.7221 | 0.8576 | 0.8911 |
| 0.5902 | 2.95 | 380 | 0.3275 | 0.6068 | 0.6696 | 0.9005 | 0.9722 | 0.0 | 0.8696 | 0.1949 | 0.9158 | 0.8191 | 0.9156 | 0.8941 | 0.0 | 0.7545 | 0.1948 | 0.8224 | 0.7303 | 0.8512 | 0.8898 |
| 0.2954 | 3.1 | 400 | 0.3389 | 0.6191 | 0.6862 | 0.9008 | 0.9662 | 0.0020 | 0.8410 | 0.3092 | 0.9207 | 0.8331 | 0.9316 | 0.9074 | 0.0020 | 0.7641 | 0.3056 | 0.8117 | 0.7045 | 0.8386 | 0.8913 |
| 0.4758 | 3.26 | 420 | 0.3122 | 0.6064 | 0.6709 | 0.9030 | 0.9682 | 0.0 | 0.9069 | 0.1837 | 0.9142 | 0.7957 | 0.9279 | 0.9092 | 0.0 | 0.7655 | 0.1834 | 0.8172 | 0.7227 | 0.8466 | 0.8923 |
| 0.6415 | 3.41 | 440 | 0.3109 | 0.6555 | 0.7172 | 0.9101 | 0.9728 | 0.0017 | 0.9050 | 0.4656 | 0.8885 | 0.8320 | 0.9550 | 0.9063 | 0.0017 | 0.7957 | 0.4534 | 0.8265 | 0.7512 | 0.8539 | 0.9014 |
| 0.5413 | 3.57 | 460 | 0.2993 | 0.6420 | 0.7045 | 0.9057 | 0.9737 | 0.0036 | 0.8782 | 0.4118 | 0.8932 | 0.8221 | 0.9487 | 0.9047 | 0.0036 | 0.7774 | 0.4103 | 0.8169 | 0.7262 | 0.8553 | 0.8967 |
| 0.2761 | 3.72 | 480 | 0.2802 | 0.6678 | 0.7309 | 0.9144 | 0.9619 | 0.0191 | 0.9168 | 0.5126 | 0.9190 | 0.8330 | 0.9542 | 0.9143 | 0.0191 | 0.7850 | 0.4981 | 0.8452 | 0.7427 | 0.8699 | 0.9067 |
| 0.3451 | 3.88 | 500 | 0.3261 | 0.6455 | 0.7056 | 0.9075 | 0.9695 | 0.0220 | 0.8345 | 0.4049 | 0.9307 | 0.8256 | 0.9520 | 0.9085 | 0.0220 | 0.7754 | 0.3995 | 0.8173 | 0.7375 | 0.8583 | 0.8988 |
| 0.2361 | 4.03 | 520 | 0.3118 | 0.6677 | 0.7285 | 0.9098 | 0.9683 | 0.0204 | 0.8678 | 0.5447 | 0.9117 | 0.8323 | 0.9547 | 0.9089 | 0.0204 | 0.7750 | 0.5374 | 0.8235 | 0.7509 | 0.8580 | 0.9019 |
| 0.2776 | 4.19 | 540 | 0.2765 | 0.6472 | 0.7121 | 0.9109 | 0.9670 | 0.0359 | 0.9025 | 0.3801 | 0.9057 | 0.8431 | 0.9507 | 0.9182 | 0.0358 | 0.7698 | 0.3764 | 0.8356 | 0.7324 | 0.8619 | 0.9029 |
| 0.3823 | 4.34 | 560 | 0.3514 | 0.6558 | 0.7181 | 0.9111 | 0.9592 | 0.0525 | 0.9005 | 0.4047 | 0.9183 | 0.8321 | 0.9591 | 0.9127 | 0.0523 | 0.7740 | 0.4016 | 0.8309 | 0.7587 | 0.8599 | 0.9036 |
| 0.747 | 4.5 | 580 | 0.3340 | 0.6764 | 0.7382 | 0.9130 | 0.9680 | 0.0617 | 0.9125 | 0.5379 | 0.8957 | 0.8362 | 0.9556 | 0.9146 | 0.0614 | 0.7948 | 0.5336 | 0.8279 | 0.7439 | 0.8588 | 0.9061 |
| 0.343 | 4.65 | 600 | 0.3065 | 0.6853 | 0.7474 | 0.9139 | 0.9647 | 0.0666 | 0.8925 | 0.5978 | 0.9128 | 0.8429 | 0.9542 | 0.9171 | 0.0664 | 0.7909 | 0.5886 | 0.8287 | 0.7436 | 0.8621 | 0.9074 |
| 0.2358 | 4.81 | 620 | 0.3229 | 0.6916 | 0.7504 | 0.9144 | 0.9719 | 0.0880 | 0.8895 | 0.6099 | 0.8976 | 0.8312 | 0.9651 | 0.9108 | 0.0874 | 0.7855 | 0.6005 | 0.8332 | 0.7563 | 0.8674 | 0.9080 |
| 0.3649 | 4.96 | 640 | 0.3026 | 0.7034 | 0.7644 | 0.9151 | 0.9686 | 0.1640 | 0.8804 | 0.6447 | 0.9148 | 0.8220 | 0.9562 | 0.9129 | 0.1617 | 0.7918 | 0.6134 | 0.8333 | 0.7502 | 0.8606 | 0.9101 |
| 0.201 | 5.12 | 660 | 0.2903 | 0.7089 | 0.7678 | 0.9194 | 0.9663 | 0.1156 | 0.9208 | 0.6627 | 0.9029 | 0.8379 | 0.9684 | 0.9153 | 0.1148 | 0.8061 | 0.6444 | 0.8451 | 0.7716 | 0.8648 | 0.9138 |
| 1.1077 | 5.27 | 680 | 0.2596 | 0.7189 | 0.7752 | 0.9221 | 0.9746 | 0.2053 | 0.8895 | 0.6365 | 0.9112 | 0.8378 | 0.9713 | 0.9192 | 0.2016 | 0.8009 | 0.6199 | 0.8479 | 0.7545 | 0.8883 | 0.9176 |
| 0.2368 | 5.43 | 700 | 0.2479 | 0.7271 | 0.7986 | 0.9213 | 0.9727 | 0.3222 | 0.8877 | 0.7104 | 0.9135 | 0.8259 | 0.9580 | 0.9184 | 0.3114 | 0.8003 | 0.5698 | 0.8370 | 0.7636 | 0.8894 | 0.9184 |
| 0.2576 | 5.58 | 720 | 0.3153 | 0.7171 | 0.7772 | 0.9173 | 0.9772 | 0.1874 | 0.8721 | 0.7060 | 0.9007 | 0.8399 | 0.9570 | 0.9152 | 0.1839 | 0.7926 | 0.6778 | 0.8408 | 0.7455 | 0.8637 | 0.9127 |
| 0.3873 | 5.74 | 740 | 0.3024 | 0.7395 | 0.7985 | 0.9212 | 0.9687 | 0.3518 | 0.9369 | 0.6845 | 0.9092 | 0.7793 | 0.9589 | 0.9208 | 0.3370 | 0.8203 | 0.6516 | 0.8367 | 0.7479 | 0.8622 | 0.9184 |
| 0.2281 | 5.89 | 760 | 0.2583 | 0.7502 | 0.8104 | 0.9227 | 0.9699 | 0.4031 | 0.9094 | 0.7032 | 0.9107 | 0.8210 | 0.9553 | 0.9229 | 0.3810 | 0.8150 | 0.6723 | 0.8431 | 0.7563 | 0.8606 | 0.9205 |
| 0.2202 | 6.05 | 780 | 0.3227 | 0.7612 | 0.8314 | 0.9205 | 0.9525 | 0.5297 | 0.9437 | 0.7038 | 0.8889 | 0.8332 | 0.9677 | 0.9253 | 0.4917 | 0.7900 | 0.6693 | 0.8338 | 0.7585 | 0.8599 | 0.9197 |
| 0.292 | 6.2 | 800 | 0.2558 | 0.7614 | 0.8266 | 0.9283 | 0.9710 | 0.4248 | 0.8964 | 0.7571 | 0.9185 | 0.8553 | 0.9629 | 0.9220 | 0.4076 | 0.8202 | 0.6464 | 0.8473 | 0.7915 | 0.8946 | 0.9264 |
| 0.1304 | 6.36 | 820 | 0.2441 | 0.7386 | 0.8067 | 0.9244 | 0.9764 | 0.3536 | 0.9007 | 0.6908 | 0.9019 | 0.8823 | 0.9412 | 0.9109 | 0.3357 | 0.8088 | 0.5524 | 0.8277 | 0.8106 | 0.9244 | 0.9221 |
| 0.1664 | 6.51 | 840 | 0.2565 | 0.7685 | 0.8302 | 0.9282 | 0.9728 | 0.4257 | 0.8564 | 0.7880 | 0.9277 | 0.8793 | 0.9614 | 0.9244 | 0.3944 | 0.8006 | 0.7192 | 0.8439 | 0.7941 | 0.9032 | 0.9263 |
| 0.4424 | 6.67 | 860 | 0.2667 | 0.7808 | 0.8611 | 0.9332 | 0.9680 | 0.5948 | 0.9061 | 0.7883 | 0.9039 | 0.8938 | 0.9727 | 0.9362 | 0.5495 | 0.8165 | 0.6008 | 0.8453 | 0.8086 | 0.9083 | 0.9326 |
| 0.3753 | 6.82 | 880 | 0.2585 | 0.7353 | 0.8117 | 0.9236 | 0.9765 | 0.4103 | 0.8985 | 0.7286 | 0.9126 | 0.7922 | 0.9633 | 0.9221 | 0.3532 | 0.8025 | 0.5636 | 0.8374 | 0.7631 | 0.9054 | 0.9215 |
| 0.2642 | 6.98 | 900 | 0.2955 | 0.7734 | 0.8443 | 0.9247 | 0.9586 | 0.5628 | 0.9093 | 0.7641 | 0.9085 | 0.8357 | 0.9708 | 0.9240 | 0.5068 | 0.8133 | 0.6949 | 0.8429 | 0.7634 | 0.8685 | 0.9238 |
| 0.5008 | 7.13 | 920 | 0.3048 | 0.7703 | 0.8430 | 0.9262 | 0.9712 | 0.5688 | 0.8871 | 0.7660 | 0.9077 | 0.8329 | 0.9676 | 0.9260 | 0.5015 | 0.8170 | 0.6626 | 0.8502 | 0.7697 | 0.8651 | 0.9251 |
| 0.169 | 7.29 | 940 | 0.2969 | 0.7778 | 0.8528 | 0.9252 | 0.9644 | 0.6690 | 0.9288 | 0.7274 | 0.8966 | 0.8274 | 0.9559 | 0.9263 | 0.5909 | 0.8081 | 0.6410 | 0.8444 | 0.7733 | 0.8608 | 0.9246 |
| 0.2429 | 7.44 | 960 | 0.3385 | 0.7906 | 0.8551 | 0.9283 | 0.9626 | 0.6420 | 0.9047 | 0.7576 | 0.9131 | 0.8281 | 0.9776 | 0.9322 | 0.5836 | 0.8160 | 0.7156 | 0.8415 | 0.7752 | 0.8701 | 0.9276 |
| 0.1542 | 7.6 | 980 | 0.3259 | 0.7882 | 0.8574 | 0.9264 | 0.9646 | 0.6734 | 0.9031 | 0.7509 | 0.9007 | 0.8403 | 0.9686 | 0.9298 | 0.5949 | 0.8138 | 0.7056 | 0.8366 | 0.7707 | 0.8663 | 0.9258 |
| 0.1378 | 7.75 | 1000 | 0.3257 | 0.7815 | 0.8589 | 0.9249 | 0.9675 | 0.6849 | 0.8784 | 0.7864 | 0.9151 | 0.8219 | 0.9580 | 0.9265 | 0.5842 | 0.8076 | 0.6769 | 0.8375 | 0.7767 | 0.8610 | 0.9242 |
| 0.2144 | 7.91 | 1020 | 0.3347 | 0.7889 | 0.8561 | 0.9276 | 0.9578 | 0.6604 | 0.9128 | 0.7455 | 0.9176 | 0.8261 | 0.9729 | 0.9317 | 0.5932 | 0.8189 | 0.7046 | 0.8416 | 0.7636 | 0.8688 | 0.9270 |
| 0.1011 | 8.06 | 1040 | 0.3099 | 0.7831 | 0.8546 | 0.9267 | 0.9655 | 0.6394 | 0.8900 | 0.7685 | 0.9091 | 0.8402 | 0.9695 | 0.9289 | 0.5594 | 0.8137 | 0.6999 | 0.8434 | 0.7682 | 0.8685 | 0.9260 |
| 0.1543 | 8.22 | 1060 | 0.3291 | 0.7921 | 0.8667 | 0.9294 | 0.9667 | 0.7434 | 0.9074 | 0.7434 | 0.9025 | 0.8251 | 0.9781 | 0.9357 | 0.6127 | 0.8145 | 0.6936 | 0.8460 | 0.7703 | 0.8720 | 0.9289 |
| 0.2624 | 8.37 | 1080 | 0.3284 | 0.7884 | 0.8593 | 0.9247 | 0.9644 | 0.6802 | 0.8663 | 0.7915 | 0.9233 | 0.8317 | 0.9580 | 0.9297 | 0.5924 | 0.8031 | 0.7343 | 0.8332 | 0.7633 | 0.8631 | 0.9241 |
| 0.1817 | 8.53 | 1100 | 0.3187 | 0.7848 | 0.8557 | 0.9255 | 0.9705 | 0.6361 | 0.9041 | 0.7843 | 0.8918 | 0.8460 | 0.9573 | 0.9265 | 0.5584 | 0.8179 | 0.7210 | 0.8371 | 0.7698 | 0.8626 | 0.9248 |
| 0.1702 | 8.68 | 1120 | 0.3412 | 0.7737 | 0.8545 | 0.9252 | 0.9680 | 0.6271 | 0.8745 | 0.8030 | 0.9108 | 0.8296 | 0.9682 | 0.9285 | 0.5294 | 0.8047 | 0.6748 | 0.8430 | 0.7686 | 0.8673 | 0.9245 |
### Framework versions
- Transformers 4.37.0
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.1
|