pedromcf commited on
Commit
581776b
·
1 Parent(s): 6ec30c5

pedromcf - Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 268.55 +/- 22.69
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0ae0287670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0ae0287700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0ae0287790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0ae0287820>", "_build": "<function ActorCriticPolicy._build at 0x7f0ae02878b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f0ae0287940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0ae02879d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0ae0287a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0ae0287af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0ae0287b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0ae0287c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0ae0287ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0ae0280900>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673559253310997366, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM17HD08E1o/8wq6PG93uL6zahg9kunDPAAAAAAAAAAAAN6GPaVfLj4RYiu+UM2HvswlOb22UYe9AAAAAAAAAAC6vjY+TMuHPysvqT4Gudq+z1W3Pp/lFj4AAAAAAAAAAGBUXT5vI1o/0PHZPA22r75IWD4+ktB4vQAAAAAAAAAAI890vovKWT/KL/M9Ghbbvu1wG75y3NE9AAAAAAAAAADGMQW+Dw7ZPoYqAD7OOZC+GaTevLFNsz0AAAAAAAAAACYIxT1VGS4/8lQVvPUtuL7EHTI9oO6IvQAAAAAAAAAAzQ6LPqpGXD/1NS69bTmmvk5cCD6CS8O8AAAAAAAAAABzWeE9cikkP22tfL1posG+DRnzPeCux70AAAAAAAAAAKagjz0h7Zc94kZmu33RPr6/6pO8zZXfuwAAAAAAAAAAhhlKPkkdgz8OcOs+QY/Ivhqrhj4lRFE+AAAAAAAAAABmpZe9Sa5iPydcoL3wcZu+nvqqvfIcIL0AAAAAAAAAAOaCxL2Rl8I99kDyPXrlcL6tp0+9X22lPAAAAAAAAAAAAJRhvVcwYT9SyCy9oYG+voC4zL1yGbW8AAAAAAAAAABa2pa9t5+ZPlzYwz19c4e+KX2XvCmALb0AAAAAAAAAAABlyTwfzeS5QpCTvVInYb6AB/G8wEA5vQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQBaiQ6C0ckCUhpRSlIwBbJRL64wBdJRHQJepH0aqCH11fZQoaAZoCWgPQwhqMXiYdnpwQJSGlFKUaBVNNwFoFkdAl6pIlY2bX3V9lChoBmgJaA9DCO9Wluiskm9AlIaUUpRoFU1jAWgWR0CXrCXU6PsBdX2UKGgGaAloD0MIatrFNBNWc0CUhpRSlGgVTQoBaBZHQJesXVQQ+U11fZQoaAZoCWgPQwimRuhn6sRtQJSGlFKUaBVNCwFoFkdAl6yUqtozvnV9lChoBmgJaA9DCK5FC9C2vV9AlIaUUpRoFU3oA2gWR0CXrLLuhK15dX2UKGgGaAloD0MIh/iHLT2RcUCUhpRSlGgVS/9oFkdAl6zXUhFEzHV9lChoBmgJaA9DCBRAMbLklXBAlIaUUpRoFU0rAWgWR0CXrQkoF3Y+dX2UKGgGaAloD0MIilWDMLc6ckCUhpRSlGgVTXABaBZHQJetPv3JxNt1fZQoaAZoCWgPQwjLLa2GBN5xQJSGlFKUaBVNCwFoFkdAl61/znRsuXV9lChoBmgJaA9DCCwrTUqBJnBAlIaUUpRoFU0WAWgWR0CXrY6+36RAdX2UKGgGaAloD0MIoBuaslPhcECUhpRSlGgVTREBaBZHQJettga3qiZ1fZQoaAZoCWgPQwj/0MyTa9BxQJSGlFKUaBVNFgFoFkdAl63qmfoRqXV9lChoBmgJaA9DCKJGIcksT3JAlIaUUpRoFU03AWgWR0CXr1jhDPWydX2UKGgGaAloD0MIePATB1CecECUhpRSlGgVTQIBaBZHQJewJDTjNpx1fZQoaAZoCWgPQwhHWFTEqW1wQJSGlFKUaBVNLwFoFkdAl7AmvfTCtXV9lChoBmgJaA9DCADJdOg0f3NAlIaUUpRoFU0iAWgWR0CXsUgbIcR2dX2UKGgGaAloD0MIc7wC0dM/c0CUhpRSlGgVTSoBaBZHQJey5yfcvdx1fZQoaAZoCWgPQwgWwf9WclNxQJSGlFKUaBVL6WgWR0CXsv/0dzXCdX2UKGgGaAloD0MI4ICWrmDhcECUhpRSlGgVS/toFkdAl7Mnv+fh/HV9lChoBmgJaA9DCPRRRlzAe3JAlIaUUpRoFUvmaBZHQJez5tl7MPl1fZQoaAZoCWgPQwjGNqlorNhuQJSGlFKUaBVNEQFoFkdAl7YCfUWl/HV9lChoBmgJaA9DCG3GaYgqvXBAlIaUUpRoFU1KAWgWR0CXtmP7N0NjdX2UKGgGaAloD0MIJNBgU+crb0CUhpRSlGgVTUABaBZHQJe2gKkVN6B1fZQoaAZoCWgPQwgg1bDfE2VxQJSGlFKUaBVNOgFoFkdAl7aLEUCaJHV9lChoBmgJaA9DCPbQPlbw3W9AlIaUUpRoFU0zAWgWR0CXt43hGYrsdX2UKGgGaAloD0MI0SFwJJDMcECUhpRSlGgVTW4BaBZHQJe5DND+irV1fZQoaAZoCWgPQwhAMEePH3pyQJSGlFKUaBVNgAFoFkdAl7k8o6S1V3V9lChoBmgJaA9DCLlTOlg/+HBAlIaUUpRoFU0dAWgWR0CXuhLJCBwudX2UKGgGaAloD0MIDYrmAeyycUCUhpRSlGgVTTwBaBZHQJe6EnYxtYV1fZQoaAZoCWgPQwhsPUM4Zm5yQJSGlFKUaBVNKwFoFkdAl7vHVG0/nnV9lChoBmgJaA9DCCyazk4GzWxAlIaUUpRoFUv6aBZHQJe76/O+qR51fZQoaAZoCWgPQwiFeCReXg9zQJSGlFKUaBVNYwFoFkdAl7xBc3VConV9lChoBmgJaA9DCDwSL08neHFAlIaUUpRoFU0BAWgWR0CXvMKIi1RcdX2UKGgGaAloD0MI7Bfshi08cUCUhpRSlGgVTSkBaBZHQJe9EI4VARl1fZQoaAZoCWgPQwjrVWR0QO1uQJSGlFKUaBVNTAFoFkdAl74fIbOu73V9lChoBmgJaA9DCOBkG7iDbXBAlIaUUpRoFUv0aBZHQJe+POQhfSh1fZQoaAZoCWgPQwhNu5hmehRwQJSGlFKUaBVNCgFoFkdAl7570aqCH3V9lChoBmgJaA9DCMpOP6iLsm9AlIaUUpRoFU0WAWgWR0CXwBFzMibEdX2UKGgGaAloD0MITTCca5gocECUhpRSlGgVTTkBaBZHQJfAK/zreIl1fZQoaAZoCWgPQwhw6ZjzDBFxQJSGlFKUaBVNAgFoFkdAl8DmMGX5WXV9lChoBmgJaA9DCPC/lexY6mtAlIaUUpRoFU0QAWgWR0CXwSthd+ocdX2UKGgGaAloD0MIPfGcLeBrcECUhpRSlGgVTXsBaBZHQJfVKBwuM/B1fZQoaAZoCWgPQwjoa5bLBo5wQJSGlFKUaBVNGwFoFkdAl9WB3A2ycHV9lChoBmgJaA9DCL6iW68psnFAlIaUUpRoFU0nAWgWR0CX1dfuCwr2dX2UKGgGaAloD0MIg4dp3xwAckCUhpRSlGgVTQUBaBZHQJfWjfKp1ih1fZQoaAZoCWgPQwinWaDdIT1xQJSGlFKUaBVL+GgWR0CX1wvaURnOdX2UKGgGaAloD0MImMCtu7nncECUhpRSlGgVTQ8BaBZHQJfXMyuZCv51fZQoaAZoCWgPQwgQIhly7D9uQJSGlFKUaBVNPgFoFkdAl9gbEP1+RnV9lChoBmgJaA9DCIIBhA+lcm9AlIaUUpRoFU0TAWgWR0CX2CfPX05EdX2UKGgGaAloD0MIC/FIvPyvcUCUhpRSlGgVS/1oFkdAl9iHXZoPCnV9lChoBmgJaA9DCM4Y5gRtj3JAlIaUUpRoFU0RAWgWR0CX2R5wwTM8dX2UKGgGaAloD0MIgEi/fR3ccECUhpRSlGgVTVQBaBZHQJfbVwPy08h1fZQoaAZoCWgPQwgVcxB0NNpuQJSGlFKUaBVNFQFoFkdAl9wEXP7emHV9lChoBmgJaA9DCCsWvylsKHFAlIaUUpRoFU07AWgWR0CX3Hjnmq5tdX2UKGgGaAloD0MIHF4QkRpYcECUhpRSlGgVTUEBaBZHQJfcjlS0jTt1fZQoaAZoCWgPQwia0CSxZKlyQJSGlFKUaBVNFAFoFkdAl91EkWykbnV9lChoBmgJaA9DCAt6bwyBnmdAlIaUUpRoFU3oA2gWR0CX3ew9q1w6dX2UKGgGaAloD0MIui784HxBc0CUhpRSlGgVTRoBaBZHQJfeQN3GGVR1fZQoaAZoCWgPQwjyBwPPPfRxQJSGlFKUaBVNBQFoFkdAl95cTJyQxXV9lChoBmgJaA9DCFFPH4G/nHFAlIaUUpRoFU0uAWgWR0CX3n2qDK5kdX2UKGgGaAloD0MIFqWEYJUWcUCUhpRSlGgVTSkBaBZHQJfgBjnV5KR1fZQoaAZoCWgPQwiHTs+7sUpvQJSGlFKUaBVNDgFoFkdAl+Apo4+8oXV9lChoBmgJaA9DCNkJL8EpJ21AlIaUUpRoFU0TAWgWR0CX4Fq5LAYYdX2UKGgGaAloD0MIBitOtZYjckCUhpRSlGgVTUEBaBZHQJfgkPjGT9t1fZQoaAZoCWgPQwgKur2kcWVyQJSGlFKUaBVNtgFoFkdAl+EeXE61cHV9lChoBmgJaA9DCHaJ6q1BiHJAlIaUUpRoFU0dAWgWR0CX4ZlT3qRmdX2UKGgGaAloD0MImRJJ9DJrcUCUhpRSlGgVTUoBaBZHQJfiIoqkM1F1fZQoaAZoCWgPQwjj/E0oROVyQJSGlFKUaBVL4GgWR0CX4tEIPbwjdX2UKGgGaAloD0MIvk9VoQFKckCUhpRSlGgVTUEBaBZHQJfkyGATZg51fZQoaAZoCWgPQwhkB5W4zlxwQJSGlFKUaBVNHwFoFkdAl+TdS/CZW3V9lChoBmgJaA9DCAU0ETY8TXFAlIaUUpRoFU0xAWgWR0CX5OiV0Lc9dX2UKGgGaAloD0MIAyfbwJ0fbUCUhpRSlGgVS/5oFkdAl+UfUrkKeHV9lChoBmgJaA9DCHibN04KLHJAlIaUUpRoFU0jAWgWR0CX5Y3jdYW+dX2UKGgGaAloD0MIK/uuCL4VcECUhpRSlGgVTSABaBZHQJfmTXpW3jN1fZQoaAZoCWgPQwjB4nDmV1RvQJSGlFKUaBVNHwFoFkdAl+aBpQDV6XV9lChoBmgJaA9DCNOjqZ6MwHBAlIaUUpRoFU1HAWgWR0CX54mHP/rCdX2UKGgGaAloD0MI5pXrbfNScECUhpRSlGgVTQgBaBZHQJfn57Vrhzh1fZQoaAZoCWgPQwjdek0PCqhyQJSGlFKUaBVNFwFoFkdAl+fruhK15XV9lChoBmgJaA9DCJF7urrjRG5AlIaUUpRoFU0eAWgWR0CX6AAckt2+dX2UKGgGaAloD0MICwqDMo14ckCUhpRSlGgVTRMBaBZHQJfotq+Jxed1fZQoaAZoCWgPQwiQvHMogxNyQJSGlFKUaBVNAwFoFkdAl+jKJ66as3V9lChoBmgJaA9DCIo8SbpmcnFAlIaUUpRoFUv6aBZHQJfpEmY0EYB1fZQoaAZoCWgPQwiHhsWoa3dxQJSGlFKUaBVNTAFoFkdAl+lXCsOoYXV9lChoBmgJaA9DCEBqEye3Q3BAlIaUUpRoFU0mAWgWR0CX6tlBQemvdX2UKGgGaAloD0MIvhHds25fckCUhpRSlGgVTQUBaBZHQJfsIBbOeJ51fZQoaAZoCWgPQwjadW9F4sFvQJSGlFKUaBVNFgFoFkdAl+xdDIBBA3V9lChoBmgJaA9DCEYIjzYO2XBAlIaUUpRoFU0nAWgWR0CX7M7muDBedX2UKGgGaAloD0MIg6RPq2hgbUCUhpRSlGgVTQ4BaBZHQJfuDIdU83d1fZQoaAZoCWgPQwjkZU0sMEFyQJSGlFKUaBVNNAFoFkdAl+4zhDPWx3V9lChoBmgJaA9DCKAzaVM1RXFAlIaUUpRoFU0CAWgWR0CX7zwn6VMVdX2UKGgGaAloD0MIQS0GD5NScUCUhpRSlGgVTQcBaBZHQJfvYSoOx0N1fZQoaAZoCWgPQwjfG0MA8J9yQJSGlFKUaBVNRAFoFkdAl++OUhV2inV9lChoBmgJaA9DCGZn0TsVK29AlIaUUpRoFU13AWgWR0CX748JD3M7dX2UKGgGaAloD0MItK88SM9XckCUhpRSlGgVTSIBaBZHQJfv0NBnjAB1fZQoaAZoCWgPQwgpWyTtxhhxQJSGlFKUaBVL/GgWR0CX8BLxI8QqdX2UKGgGaAloD0MIJ4dPOpHlckCUhpRSlGgVTSABaBZHQJfwJ06o2n91fZQoaAZoCWgPQwhbBwd7E8pxQJSGlFKUaBVNCAFoFkdAl/BGkrPMS3V9lChoBmgJaA9DCOjAcoQMcXFAlIaUUpRoFU0BAWgWR0CX8L/gBLf2dX2UKGgGaAloD0MILESHwNGsckCUhpRSlGgVTQ4BaBZHQJfwxtxdY4h1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 256, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
lunar_ppo_1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fdb354be878519972959f85868171a4901a726f639bca2a8d785b1e121b80ba0
3
+ size 147408
lunar_ppo_1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
lunar_ppo_1/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0ae0287670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0ae0287700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0ae0287790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0ae0287820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f0ae02878b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f0ae0287940>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0ae02879d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0ae0287a60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f0ae0287af0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0ae0287b80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0ae0287c10>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0ae0287ca0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f0ae0280900>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673559253310997366,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM17HD08E1o/8wq6PG93uL6zahg9kunDPAAAAAAAAAAAAN6GPaVfLj4RYiu+UM2HvswlOb22UYe9AAAAAAAAAAC6vjY+TMuHPysvqT4Gudq+z1W3Pp/lFj4AAAAAAAAAAGBUXT5vI1o/0PHZPA22r75IWD4+ktB4vQAAAAAAAAAAI890vovKWT/KL/M9Ghbbvu1wG75y3NE9AAAAAAAAAADGMQW+Dw7ZPoYqAD7OOZC+GaTevLFNsz0AAAAAAAAAACYIxT1VGS4/8lQVvPUtuL7EHTI9oO6IvQAAAAAAAAAAzQ6LPqpGXD/1NS69bTmmvk5cCD6CS8O8AAAAAAAAAABzWeE9cikkP22tfL1posG+DRnzPeCux70AAAAAAAAAAKagjz0h7Zc94kZmu33RPr6/6pO8zZXfuwAAAAAAAAAAhhlKPkkdgz8OcOs+QY/Ivhqrhj4lRFE+AAAAAAAAAABmpZe9Sa5iPydcoL3wcZu+nvqqvfIcIL0AAAAAAAAAAOaCxL2Rl8I99kDyPXrlcL6tp0+9X22lPAAAAAAAAAAAAJRhvVcwYT9SyCy9oYG+voC4zL1yGbW8AAAAAAAAAABa2pa9t5+ZPlzYwz19c4e+KX2XvCmALb0AAAAAAAAAAABlyTwfzeS5QpCTvVInYb6AB/G8wEA5vQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQBaiQ6C0ckCUhpRSlIwBbJRL64wBdJRHQJepH0aqCH11fZQoaAZoCWgPQwhqMXiYdnpwQJSGlFKUaBVNNwFoFkdAl6pIlY2bX3V9lChoBmgJaA9DCO9Wluiskm9AlIaUUpRoFU1jAWgWR0CXrCXU6PsBdX2UKGgGaAloD0MIatrFNBNWc0CUhpRSlGgVTQoBaBZHQJesXVQQ+U11fZQoaAZoCWgPQwimRuhn6sRtQJSGlFKUaBVNCwFoFkdAl6yUqtozvnV9lChoBmgJaA9DCK5FC9C2vV9AlIaUUpRoFU3oA2gWR0CXrLLuhK15dX2UKGgGaAloD0MIh/iHLT2RcUCUhpRSlGgVS/9oFkdAl6zXUhFEzHV9lChoBmgJaA9DCBRAMbLklXBAlIaUUpRoFU0rAWgWR0CXrQkoF3Y+dX2UKGgGaAloD0MIilWDMLc6ckCUhpRSlGgVTXABaBZHQJetPv3JxNt1fZQoaAZoCWgPQwjLLa2GBN5xQJSGlFKUaBVNCwFoFkdAl61/znRsuXV9lChoBmgJaA9DCCwrTUqBJnBAlIaUUpRoFU0WAWgWR0CXrY6+36RAdX2UKGgGaAloD0MIoBuaslPhcECUhpRSlGgVTREBaBZHQJettga3qiZ1fZQoaAZoCWgPQwj/0MyTa9BxQJSGlFKUaBVNFgFoFkdAl63qmfoRqXV9lChoBmgJaA9DCKJGIcksT3JAlIaUUpRoFU03AWgWR0CXr1jhDPWydX2UKGgGaAloD0MIePATB1CecECUhpRSlGgVTQIBaBZHQJewJDTjNpx1fZQoaAZoCWgPQwhHWFTEqW1wQJSGlFKUaBVNLwFoFkdAl7AmvfTCtXV9lChoBmgJaA9DCADJdOg0f3NAlIaUUpRoFU0iAWgWR0CXsUgbIcR2dX2UKGgGaAloD0MIc7wC0dM/c0CUhpRSlGgVTSoBaBZHQJey5yfcvdx1fZQoaAZoCWgPQwgWwf9WclNxQJSGlFKUaBVL6WgWR0CXsv/0dzXCdX2UKGgGaAloD0MI4ICWrmDhcECUhpRSlGgVS/toFkdAl7Mnv+fh/HV9lChoBmgJaA9DCPRRRlzAe3JAlIaUUpRoFUvmaBZHQJez5tl7MPl1fZQoaAZoCWgPQwjGNqlorNhuQJSGlFKUaBVNEQFoFkdAl7YCfUWl/HV9lChoBmgJaA9DCG3GaYgqvXBAlIaUUpRoFU1KAWgWR0CXtmP7N0NjdX2UKGgGaAloD0MIJNBgU+crb0CUhpRSlGgVTUABaBZHQJe2gKkVN6B1fZQoaAZoCWgPQwgg1bDfE2VxQJSGlFKUaBVNOgFoFkdAl7aLEUCaJHV9lChoBmgJaA9DCPbQPlbw3W9AlIaUUpRoFU0zAWgWR0CXt43hGYrsdX2UKGgGaAloD0MI0SFwJJDMcECUhpRSlGgVTW4BaBZHQJe5DND+irV1fZQoaAZoCWgPQwhAMEePH3pyQJSGlFKUaBVNgAFoFkdAl7k8o6S1V3V9lChoBmgJaA9DCLlTOlg/+HBAlIaUUpRoFU0dAWgWR0CXuhLJCBwudX2UKGgGaAloD0MIDYrmAeyycUCUhpRSlGgVTTwBaBZHQJe6EnYxtYV1fZQoaAZoCWgPQwhsPUM4Zm5yQJSGlFKUaBVNKwFoFkdAl7vHVG0/nnV9lChoBmgJaA9DCCyazk4GzWxAlIaUUpRoFUv6aBZHQJe76/O+qR51fZQoaAZoCWgPQwiFeCReXg9zQJSGlFKUaBVNYwFoFkdAl7xBc3VConV9lChoBmgJaA9DCDwSL08neHFAlIaUUpRoFU0BAWgWR0CXvMKIi1RcdX2UKGgGaAloD0MI7Bfshi08cUCUhpRSlGgVTSkBaBZHQJe9EI4VARl1fZQoaAZoCWgPQwjrVWR0QO1uQJSGlFKUaBVNTAFoFkdAl74fIbOu73V9lChoBmgJaA9DCOBkG7iDbXBAlIaUUpRoFUv0aBZHQJe+POQhfSh1fZQoaAZoCWgPQwhNu5hmehRwQJSGlFKUaBVNCgFoFkdAl7570aqCH3V9lChoBmgJaA9DCMpOP6iLsm9AlIaUUpRoFU0WAWgWR0CXwBFzMibEdX2UKGgGaAloD0MITTCca5gocECUhpRSlGgVTTkBaBZHQJfAK/zreIl1fZQoaAZoCWgPQwhw6ZjzDBFxQJSGlFKUaBVNAgFoFkdAl8DmMGX5WXV9lChoBmgJaA9DCPC/lexY6mtAlIaUUpRoFU0QAWgWR0CXwSthd+ocdX2UKGgGaAloD0MIPfGcLeBrcECUhpRSlGgVTXsBaBZHQJfVKBwuM/B1fZQoaAZoCWgPQwjoa5bLBo5wQJSGlFKUaBVNGwFoFkdAl9WB3A2ycHV9lChoBmgJaA9DCL6iW68psnFAlIaUUpRoFU0nAWgWR0CX1dfuCwr2dX2UKGgGaAloD0MIg4dp3xwAckCUhpRSlGgVTQUBaBZHQJfWjfKp1ih1fZQoaAZoCWgPQwinWaDdIT1xQJSGlFKUaBVL+GgWR0CX1wvaURnOdX2UKGgGaAloD0MImMCtu7nncECUhpRSlGgVTQ8BaBZHQJfXMyuZCv51fZQoaAZoCWgPQwgQIhly7D9uQJSGlFKUaBVNPgFoFkdAl9gbEP1+RnV9lChoBmgJaA9DCIIBhA+lcm9AlIaUUpRoFU0TAWgWR0CX2CfPX05EdX2UKGgGaAloD0MIC/FIvPyvcUCUhpRSlGgVS/1oFkdAl9iHXZoPCnV9lChoBmgJaA9DCM4Y5gRtj3JAlIaUUpRoFU0RAWgWR0CX2R5wwTM8dX2UKGgGaAloD0MIgEi/fR3ccECUhpRSlGgVTVQBaBZHQJfbVwPy08h1fZQoaAZoCWgPQwgVcxB0NNpuQJSGlFKUaBVNFQFoFkdAl9wEXP7emHV9lChoBmgJaA9DCCsWvylsKHFAlIaUUpRoFU07AWgWR0CX3Hjnmq5tdX2UKGgGaAloD0MIHF4QkRpYcECUhpRSlGgVTUEBaBZHQJfcjlS0jTt1fZQoaAZoCWgPQwia0CSxZKlyQJSGlFKUaBVNFAFoFkdAl91EkWykbnV9lChoBmgJaA9DCAt6bwyBnmdAlIaUUpRoFU3oA2gWR0CX3ew9q1w6dX2UKGgGaAloD0MIui784HxBc0CUhpRSlGgVTRoBaBZHQJfeQN3GGVR1fZQoaAZoCWgPQwjyBwPPPfRxQJSGlFKUaBVNBQFoFkdAl95cTJyQxXV9lChoBmgJaA9DCFFPH4G/nHFAlIaUUpRoFU0uAWgWR0CX3n2qDK5kdX2UKGgGaAloD0MIFqWEYJUWcUCUhpRSlGgVTSkBaBZHQJfgBjnV5KR1fZQoaAZoCWgPQwiHTs+7sUpvQJSGlFKUaBVNDgFoFkdAl+Apo4+8oXV9lChoBmgJaA9DCNkJL8EpJ21AlIaUUpRoFU0TAWgWR0CX4Fq5LAYYdX2UKGgGaAloD0MIBitOtZYjckCUhpRSlGgVTUEBaBZHQJfgkPjGT9t1fZQoaAZoCWgPQwgKur2kcWVyQJSGlFKUaBVNtgFoFkdAl+EeXE61cHV9lChoBmgJaA9DCHaJ6q1BiHJAlIaUUpRoFU0dAWgWR0CX4ZlT3qRmdX2UKGgGaAloD0MImRJJ9DJrcUCUhpRSlGgVTUoBaBZHQJfiIoqkM1F1fZQoaAZoCWgPQwjj/E0oROVyQJSGlFKUaBVL4GgWR0CX4tEIPbwjdX2UKGgGaAloD0MIvk9VoQFKckCUhpRSlGgVTUEBaBZHQJfkyGATZg51fZQoaAZoCWgPQwhkB5W4zlxwQJSGlFKUaBVNHwFoFkdAl+TdS/CZW3V9lChoBmgJaA9DCAU0ETY8TXFAlIaUUpRoFU0xAWgWR0CX5OiV0Lc9dX2UKGgGaAloD0MIAyfbwJ0fbUCUhpRSlGgVS/5oFkdAl+UfUrkKeHV9lChoBmgJaA9DCHibN04KLHJAlIaUUpRoFU0jAWgWR0CX5Y3jdYW+dX2UKGgGaAloD0MIK/uuCL4VcECUhpRSlGgVTSABaBZHQJfmTXpW3jN1fZQoaAZoCWgPQwjB4nDmV1RvQJSGlFKUaBVNHwFoFkdAl+aBpQDV6XV9lChoBmgJaA9DCNOjqZ6MwHBAlIaUUpRoFU1HAWgWR0CX54mHP/rCdX2UKGgGaAloD0MI5pXrbfNScECUhpRSlGgVTQgBaBZHQJfn57Vrhzh1fZQoaAZoCWgPQwjdek0PCqhyQJSGlFKUaBVNFwFoFkdAl+fruhK15XV9lChoBmgJaA9DCJF7urrjRG5AlIaUUpRoFU0eAWgWR0CX6AAckt2+dX2UKGgGaAloD0MICwqDMo14ckCUhpRSlGgVTRMBaBZHQJfotq+Jxed1fZQoaAZoCWgPQwiQvHMogxNyQJSGlFKUaBVNAwFoFkdAl+jKJ66as3V9lChoBmgJaA9DCIo8SbpmcnFAlIaUUpRoFUv6aBZHQJfpEmY0EYB1fZQoaAZoCWgPQwiHhsWoa3dxQJSGlFKUaBVNTAFoFkdAl+lXCsOoYXV9lChoBmgJaA9DCEBqEye3Q3BAlIaUUpRoFU0mAWgWR0CX6tlBQemvdX2UKGgGaAloD0MIvhHds25fckCUhpRSlGgVTQUBaBZHQJfsIBbOeJ51fZQoaAZoCWgPQwjadW9F4sFvQJSGlFKUaBVNFgFoFkdAl+xdDIBBA3V9lChoBmgJaA9DCEYIjzYO2XBAlIaUUpRoFU0nAWgWR0CX7M7muDBedX2UKGgGaAloD0MIg6RPq2hgbUCUhpRSlGgVTQ4BaBZHQJfuDIdU83d1fZQoaAZoCWgPQwjkZU0sMEFyQJSGlFKUaBVNNAFoFkdAl+4zhDPWx3V9lChoBmgJaA9DCKAzaVM1RXFAlIaUUpRoFU0CAWgWR0CX7zwn6VMVdX2UKGgGaAloD0MIQS0GD5NScUCUhpRSlGgVTQcBaBZHQJfvYSoOx0N1fZQoaAZoCWgPQwjfG0MA8J9yQJSGlFKUaBVNRAFoFkdAl++OUhV2inV9lChoBmgJaA9DCGZn0TsVK29AlIaUUpRoFU13AWgWR0CX748JD3M7dX2UKGgGaAloD0MItK88SM9XckCUhpRSlGgVTSIBaBZHQJfv0NBnjAB1fZQoaAZoCWgPQwgpWyTtxhhxQJSGlFKUaBVL/GgWR0CX8BLxI8QqdX2UKGgGaAloD0MIJ4dPOpHlckCUhpRSlGgVTSABaBZHQJfwJ06o2n91fZQoaAZoCWgPQwhbBwd7E8pxQJSGlFKUaBVNCAFoFkdAl/BGkrPMS3V9lChoBmgJaA9DCOjAcoQMcXFAlIaUUpRoFU0BAWgWR0CX8L/gBLf2dX2UKGgGaAloD0MILESHwNGsckCUhpRSlGgVTQ4BaBZHQJfwxtxdY4h1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 256,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
lunar_ppo_1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ad1082343879a895cb03064cc541be460b4e9bfe8df01053145cca2f7a63628
3
+ size 87929
lunar_ppo_1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80561879461db9c71ec454af10848f021291922d8c1bae928159b17f04c415de
3
+ size 43393
lunar_ppo_1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
lunar_ppo_1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (194 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 268.5540342416058, "std_reward": 22.689680804688727, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-12T21:53:08.909551"}