File size: 13,712 Bytes
80913ec |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c7e2fbab400>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c7e2fbab490>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c7e2fbab520>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c7e2fbab5b0>", "_build": "<function ActorCriticPolicy._build at 0x7c7e2fbab640>", "forward": "<function ActorCriticPolicy.forward at 0x7c7e2fbab6d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c7e2fbab760>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c7e2fbab7f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7c7e2fbab880>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c7e2fbab910>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c7e2fbab9a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c7e2fbaba30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c7e2fb4a2c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1726075041540330816, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJPCHb6s24g8RfffOjA2mblsJRe+XnoauQAAgD8AAIA/5oMYvZdzpT/zoK2+AhIXv7zk+LxY+hm+AAAAAAAAAADmWcS9XOmbPz3xlb5xf/e+AZ74vfC7/rwAAAAAAAAAAJoZZbqFY+S5GoBXNXRA/jACT/Y7iVGCtAAAgD8AAIA/glKDvo9ocz++wLW+Q3YCvzTyt74STk48AAAAAAAAAADzMAC+4nF9PtfXFz6FcI++2tADPWzlBD0AAAAAAAAAAOZqxz2d6bM+3qqEO1S5g772f7M8GL1cvAAAAAAAAAAAMzkaPY/7RT4XjxO9OmOTvgQaXzxGtai9AAAAAAAAAADNpPM76q61P57SND7Rxl09+ISIutV5CD0AAAAAAAAAAGaepzztFKo/dwQEPj9H277lizI9hs0fPQAAAAAAAAAAzTxfOxEarz/xUiE9bhCjvmbfJDv4S+G6AAAAAAAAAACgWEi+qLibvJNA5zpTwyg5gi8GPv7SEboAAIA/AACAP2bwQDy/AWI/Xq6DvN0zBL+PVSo8nnUUPQAAAAAAAAAAKuSMPmo74j5CY5K8ul+kvksLtz0hhZo7AAAAAAAAAAAa3T4+trBrvIBiibmywqc3kcXWveWEqzgAAIA/AACAP0CHOr6k92Y87mFVu4Gahjkx3fi9HdqLOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVCQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEPxO1v2oOMAWyUS+GMAXSUR0CaG1MoMKCydX2UKGgGR0BiQ5Arxy4naAdN6ANoCEdAmhvwwK0D2nV9lChoBkdAbVP8yeqaPWgHS/loCEdAmhyUT6BRRHV9lChoBkdAcG+KLKmsNmgHS+NoCEdAmh2TEWIoE3V9lChoBkdAbsv6FdszmGgHS+BoCEdAmh334wh4dXV9lChoBkdAb5nocJdB0WgHS+JoCEdAmh4DoyKvV3V9lChoBkdAYbOxZ+x4ZGgHTegDaAhHQJoe33XZoPF1fZQoaAZHQHMFyApazNVoB009AWgIR0CaH0swL3K0dX2UKGgGR0BwfDrQgLZ0aAdN1AFoCEdAmiCJu/Dcd3V9lChoBkdAYtsGHpKSPmgHTegDaAhHQJohOaScLBt1fZQoaAZHQHDUgFLWZqpoB0vqaAhHQJohrT/hl191fZQoaAZHQG7rZRjz7MxoB0vraAhHQJojOj/Mnqp1fZQoaAZHQGyQwY1pCa9oB0vhaAhHQJojOvTw2EV1fZQoaAZHQHEFDAN5MURoB0v2aAhHQJokiKKpDNR1fZQoaAZHQHGWQpe/pMZoB0v6aAhHQJolTCdjG1h1fZQoaAZHQHEdqJVKf4BoB0v4aAhHQJomOfg75mB1fZQoaAZHQG3BtgjQiRpoB0vyaAhHQJomalBQemx1fZQoaAZHQHDaOyu6mO5oB00PAWgIR0CaKKR7qptKdX2UKGgGR0Bva4vzvqkeaAdL3WgIR0CaKKVvuPV/dX2UKGgGR0BwQPRArxy5aAdNBAFoCEdAmii/Zdv863V9lChoBkdAbgmotthuwWgHS+RoCEdAmin8ma6ST3V9lChoBkdAWN3yjHn2ZmgHTegDaAhHQJord73PAwh1fZQoaAZHQHClFrylN11oB00IAWgIR0CaLF+/QBxQdX2UKGgGR0BtIe6VdHDraAdL2mgIR0CaLiyPdVNpdX2UKGgGR0Bu+Dh1klNUaAdNHQFoCEdAmi/m5H3DenV9lChoBkdAbxzmQr+YMWgHS9NoCEdAmjBF9F4LTnV9lChoBkdAcSzEq2Bre2gHTSYBaAhHQJowZJRO1v51fZQoaAZHQG9QJKjBVMpoB00RAWgIR0CaMjIq9XcQdX2UKGgGR0Bzd+O5rgwXaAdLx2gIR0CaMr/6wdKedX2UKGgGR0Bvjjf51vETaAdNwAJoCEdAmjNXuRcNY3V9lChoBkdAbZ2WhysCDGgHS+hoCEdAmjPHbh3qzXV9lChoBkdAYZkeeWfK6mgHTegDaAhHQJo0l6w+t8x1fZQoaAZHQHBONtVJcxFoB003AWgIR0CaNK4qgAZLdX2UKGgGR0BsLrAYYR/WaAdL92gIR0CaNUsQd0aIdX2UKGgGR0BwJ3StvGZNaAdL2mgIR0CaNVHdoFmndX2UKGgGR0ByZEXJo0yhaAdNJgFoCEdAmjXdc0Ltu3V9lChoBkdAcLBDyOJcgWgHS+9oCEdAmjixFy7wrnV9lChoBkdAcXj/BnBciWgHS8RoCEdAmjpwTh5xBHV9lChoBkdAcZewJgLJCGgHS/9oCEdAmjsePRzBAXV9lChoBkdAcFffoRqXW2gHS/VoCEdAmjs1DOTq0XV9lChoBkdAcNHykKu0TmgHS9JoCEdAmjv1RLsa9HV9lChoBkdAbiW6ij+Jg2gHS/poCEdAmjwpFLFn7HV9lChoBkdAXHMf7rLQomgHTegDaAhHQJo8euOjqOd1fZQoaAZHQHHF08q4H5doB0vvaAhHQJo94XcgyM11fZQoaAZHQHCCH+ZPVNJoB02LAWgIR0CaPyYyO7xvdX2UKGgGR0ByuxcqvvBraAdNLgFoCEdAmkAmKEWZZ3V9lChoBkdAcLoLqlgtvmgHS+NoCEdAmkFXj2i+L3V9lChoBkdAcMx5yEL6UWgHTXEBaAhHQJpB5JlJ6IF1fZQoaAZHQG9t3Dm8ujBoB0vUaAhHQJpDLLr5ZbJ1fZQoaAZHQG/ON2s7uD1oB0voaAhHQJpDQVzp5eJ1fZQoaAZHQHDUs+iaiK1oB0voaAhHQJpElZeRgZ11fZQoaAZHQGEsIRRMvh9oB03oA2gIR0CaRN0qpcX4dX2UKGgGR0BxGKBOHnEEaAdNBgFoCEdAmkTtGViWmnV9lChoBkdAcDOhzeXRgWgHS/JoCEdAmkVcy8BdU3V9lChoBkdAcQGL127nPmgHTQsBaAhHQJpF4tFrl/91fZQoaAZHQHCI1F6Rhc9oB0vkaAhHQJpGEJY1YQt1fZQoaAZHQG70l2mpEQZoB0vsaAhHQJpHW5NGmUJ1fZQoaAZHQHEClY+0PYpoB00MAWgIR0CaSX4ffXPJdX2UKGgGR0BxbqjtXxOMaAdL+2gIR0CaSrObRWtEdX2UKGgGR0BwZtjBl+VkaAdL4GgIR0CaSu8neBQOdX2UKGgGR0BwFDnzQNTcaAdNIwFoCEdAmkui2QXAM3V9lChoBkdAbG9hOP/7zmgHS/FoCEdAmk0DU7Sy+3V9lChoBkdAcDwlg+hXbWgHS8toCEdAmk1aeCkGinV9lChoBkdAc2DZWq94/2gHS+hoCEdAmk2cQyylenV9lChoBkdAbqiMBIWgvmgHS/toCEdAmk3FQAMlTnV9lChoBkdAcnouIhyKemgHS91oCEdAmk3WKEWZZ3V9lChoBkdAcLxVzZHuqmgHS9ZoCEdAmk9K+nIhhnV9lChoBkdAb6GKqn3tbGgHTWgBaAhHQJpSDzH0btJ1fZQoaAZHQGRdQBHTZxtoB03oA2gIR0CaUn6qKgqWdX2UKGgGR0BwJd3JPqLTaAdL6mgIR0CaUowevIOpdX2UKGgGR0Bsu1x6v7m/aAdL32gIR0CaUz2+fywwdX2UKGgGR0BgQKFoL5RCaAdN6ANoCEdAmlO2C/XXiHV9lChoBkdAcWvooNNJv2gHS+BoCEdAmlQZiuuA7XV9lChoBkdAYDTV6u4gBGgHTegDaAhHQJpU7tCzC1t1fZQoaAZHQHC2AFkhA4ZoB0vjaAhHQJpVU91U2k11fZQoaAZHQHFj6HXVbzNoB0vUaAhHQJpVf2dupCN1fZQoaAZHQG6hb5/LDAJoB0v3aAhHQJpWI6gdwNt1fZQoaAZHQHIOBWtEG7loB00DAWgIR0CaVsCZ4Oc2dX2UKGgGR0BuKSJdjXnRaAdL3WgIR0CaVuGnn+yadX2UKGgGR0BgmxMpPRAsaAdN6ANoCEdAmlkBYvFm4HV9lChoBkdAcHBlVtGd7WgHTXEBaAhHQJpZ1hjOLR91fZQoaAZHQHAAVmapgkVoB00AAWgIR0CaWj0Kqn3tdX2UKGgGR0BuvYnOSntOaAdL6WgIR0CaWqNlAeJYdX2UKGgGR0Bxa6TbFjusaAdNGgFoCEdAml1oAbQ1JnV9lChoBkdAbdwqXF98Z2gHTQsBaAhHQJpd9KAavRt1fZQoaAZHQHBCDTz/ZNBoB0v/aAhHQJpeACW/rSp1fZQoaAZHQHEd7bcoH9poB0voaAhHQJpeL+YMOPN1fZQoaAZHQHI3fcafjCJoB00RAWgIR0CaXud9Ujs2dX2UKGgGR0BuI4j0L+glaAdL6WgIR0CaXxxQSBbwdX2UKGgGR0Bz+Vmz0HyFaAdNMQFoCEdAmmLGIXTEznV9lChoBkdAcCzhoduHe2gHS89oCEdAmmOGc4HX3HV9lChoBkdAcFvdfLLZBmgHS9FoCEdAmmQ2epXIVHV9lChoBkdAcVEFqSHM2WgHTQsBaAhHQJpkfX9R77d1fZQoaAZHQGzp8La24NJoB00cAmgIR0CaZqTER8MNdX2UKGgGR0BwKFas6q82aAdNLwFoCEdAmmdKw6hg3XV9lChoBkdAcsE2vB7/oGgHS91oCEdAmmfe8kD6nHV9lChoBkdAcJmmhM8HOmgHS+VoCEdAmmhKoIfKZHV9lChoBkdAbVgiKR+z+mgHS/FoCEdAmmiBfF72MHV9lChoBkdAYZQvIOpbU2gHTegDaAhHQJpohTFVDKJ1fZQoaAZHQG+aRDCxeLNoB0vfaAhHQJpoqm65Gz91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |