File size: 1,735 Bytes
903837d
 
 
 
4994dae
903837d
 
 
 
 
 
4994dae
903837d
4994dae
903837d
4994dae
 
 
 
 
 
 
903837d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4994dae
903837d
 
 
 
4994dae
 
 
903837d
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
tags:
- generated_from_keras_callback
model-index:
- name: pbrennanwhite/layoutlm-funsd-tf
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# pbrennanwhite/layoutlm-funsd-tf

This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.6675
- Validation Loss: 1.3532
- Train Overall Precision: 0.3327
- Train Overall Recall: 0.3477
- Train Overall F1: 0.3400
- Train Overall Accuracy: 0.5549
- Epoch: 0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16

### Training results

| Train Loss | Validation Loss | Train Overall Precision | Train Overall Recall | Train Overall F1 | Train Overall Accuracy | Epoch |
|:----------:|:---------------:|:-----------------------:|:--------------------:|:----------------:|:----------------------:|:-----:|
| 1.6675     | 1.3532          | 0.3327                  | 0.3477               | 0.3400           | 0.5549                 | 0     |


### Framework versions

- Transformers 4.26.1
- TensorFlow 2.11.0
- Datasets 2.9.0
- Tokenizers 0.13.2