added temp sine wave to test base64 encoding
Browse files- __pycache__/handler.cpython-310.pyc +0 -0
- __pycache__/handler.cpython-311.pyc +0 -0
- handler.py +60 -23
- test.js +0 -0
__pycache__/handler.cpython-310.pyc
CHANGED
Binary files a/__pycache__/handler.cpython-310.pyc and b/__pycache__/handler.cpython-310.pyc differ
|
|
__pycache__/handler.cpython-311.pyc
ADDED
Binary file (4.42 kB). View file
|
|
handler.py
CHANGED
@@ -4,6 +4,43 @@ from transformers import AutoProcessor, MusicgenForConditionalGeneration
|
|
4 |
import torch
|
5 |
import io
|
6 |
import base64
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
def create_params(params, fr):
|
9 |
# default
|
@@ -38,7 +75,7 @@ class EndpointHandler:
|
|
38 |
self.model = MusicgenForConditionalGeneration.from_pretrained(path, torch_dtype=torch.float16)
|
39 |
self.model.to('cuda')
|
40 |
|
41 |
-
def __call__(self, data: Dict[str, Any]) -> str:
|
42 |
"""
|
43 |
Args:
|
44 |
data (:dict:):
|
@@ -47,37 +84,37 @@ class EndpointHandler:
|
|
47 |
Returns: wav file in bytes
|
48 |
"""
|
49 |
|
50 |
-
inputs = data.pop("inputs", data)
|
51 |
-
params = data.pop("parameters", None)
|
52 |
|
53 |
-
inputs = self.processor(
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
).to('cuda')
|
58 |
|
59 |
-
params = create_params(params, self.model.config.audio_encoder.frame_rate)
|
60 |
|
61 |
-
with torch.cuda.amp.autocast():
|
62 |
-
|
63 |
|
64 |
-
pred = outputs[0, 0].cpu().numpy()
|
65 |
-
sr = 32000
|
66 |
|
67 |
-
try:
|
68 |
-
|
69 |
|
70 |
-
except:
|
71 |
-
|
72 |
|
73 |
-
wav_buffer = io.BytesIO()
|
74 |
-
wavfile.write(wav_buffer, rate=sr, data=pred)
|
|
|
75 |
|
76 |
-
|
77 |
-
base64_encoded_wav = base64.b64encode(wav_data).decode('utf-8')
|
78 |
|
79 |
-
|
80 |
-
return base64_encoded_wav
|
81 |
|
82 |
|
83 |
if __name__ == "__main__":
|
|
|
4 |
import torch
|
5 |
import io
|
6 |
import base64
|
7 |
+
import wave
|
8 |
+
import array
|
9 |
+
import math
|
10 |
+
|
11 |
+
def generate_sine_wave(freq, duration, sample_rate, amplitude):
|
12 |
+
n_samples = int(sample_rate * duration)
|
13 |
+
samples = []
|
14 |
+
|
15 |
+
for x in range(n_samples):
|
16 |
+
value = amplitude * math.sin(2 * math.pi * freq * x / sample_rate)
|
17 |
+
samples.append(int(value)) # rounding to the nearest integer
|
18 |
+
|
19 |
+
return array.array("h", samples) # array of short integers
|
20 |
+
|
21 |
+
|
22 |
+
def sine_to_base64():
|
23 |
+
frequency = 440.0 # Frequency in Hz
|
24 |
+
duration = 1.0 # seconds
|
25 |
+
volume = 0.5 # 0.0 to 1.0
|
26 |
+
sample_rate = 44100
|
27 |
+
amplitude = int(volume * 32767) # 16-bit audio
|
28 |
+
|
29 |
+
sine_wave = generate_sine_wave(frequency, duration, sample_rate, amplitude)
|
30 |
+
|
31 |
+
wav_buffer = io.BytesIO()
|
32 |
+
with wave.open(wav_buffer, "w") as wav_file:
|
33 |
+
n_channels = 1
|
34 |
+
sampwidth = 2
|
35 |
+
n_frames = len(sine_wave)
|
36 |
+
comptype = "NONE"
|
37 |
+
compname = "not compressed"
|
38 |
+
wav_file.setparams((n_channels, sampwidth, int(sample_rate), n_frames, comptype, compname))
|
39 |
+
wav_file.writeframes(sine_wave.tobytes())
|
40 |
+
|
41 |
+
base64_string = base64.b64encode(wav_buffer.getvalue()).decode('utf-8')
|
42 |
+
return base64_string
|
43 |
+
|
44 |
|
45 |
def create_params(params, fr):
|
46 |
# default
|
|
|
75 |
self.model = MusicgenForConditionalGeneration.from_pretrained(path, torch_dtype=torch.float16)
|
76 |
self.model.to('cuda')
|
77 |
|
78 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, str]]:
|
79 |
"""
|
80 |
Args:
|
81 |
data (:dict:):
|
|
|
84 |
Returns: wav file in bytes
|
85 |
"""
|
86 |
|
87 |
+
# inputs = data.pop("inputs", data)
|
88 |
+
# params = data.pop("parameters", None)
|
89 |
|
90 |
+
# inputs = self.processor(
|
91 |
+
# text=[inputs],
|
92 |
+
# padding=True,
|
93 |
+
# return_tensors="pt"
|
94 |
+
# ).to('cuda')
|
95 |
|
96 |
+
# params = create_params(params, self.model.config.audio_encoder.frame_rate)
|
97 |
|
98 |
+
# with torch.cuda.amp.autocast():
|
99 |
+
# outputs = self.model.generate(**inputs, **params)
|
100 |
|
101 |
+
# pred = outputs[0, 0].cpu().numpy()
|
102 |
+
# sr = 32000
|
103 |
|
104 |
+
# try:
|
105 |
+
# sr = self.model.config.audio_encoder.sampling_rate
|
106 |
|
107 |
+
# except:
|
108 |
+
# sr = 32000
|
109 |
|
110 |
+
# wav_buffer = io.BytesIO()
|
111 |
+
# wavfile.write(wav_buffer, rate=sr, data=pred)
|
112 |
+
# wav_data = wav_buffer.getvalue()
|
113 |
|
114 |
+
# base64_encoded_wav = base64.b64encode(wav_data).decode('utf-8')
|
|
|
115 |
|
116 |
+
base64_encoded_wav = sine_to_base64()
|
117 |
+
return [{"audio": base64_encoded_wav}]
|
118 |
|
119 |
|
120 |
if __name__ == "__main__":
|
test.js
ADDED
The diff for this file is too large to render.
See raw diff
|
|