|
from typing import Dict, List, Any |
|
from transformers import AutoProcessor, MusicgenForConditionalGeneration |
|
import torch |
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
|
|
self.processor = AutoProcessor.from_pretrained(path) |
|
self.model = MusicgenForConditionalGeneration.from_pretrained(path, torch_dtype=torch.float16) |
|
self.model.to('cuda') |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
Args: |
|
data (:dict:): |
|
The payload with the text prompt and generation parameters. |
|
""" |
|
|
|
inputs = data.pop("inputs", data) |
|
params = data.pop("parameters", None) |
|
|
|
inputs = self.processor( |
|
text=[inputs], |
|
padding=True, |
|
return_tensors="pt" |
|
).to('cuda') |
|
|
|
if params is not None: |
|
with torch.cuda.amp.autocast(): |
|
outputs = self.model.generate(**inputs, **params) |
|
else: |
|
with torch.cuda.amp.autocast(): |
|
outputs = self.model.generate(**inputs) |
|
|
|
pred = outputs[0].cpu().numpy().tolist() |
|
|
|
return [{"audio": pred, "sr": self.model.config.sampling_rate}] |
|
|
|
|