File size: 39,389 Bytes
18bb063 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 |
---
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4247
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
widget:
- source_sentence: The Opa1 protein localizes to the mitochondria.Opa1 is found normally
in the mitochondrial intermembrane space.
sentences:
- Which is the cellular localization of the protein Opa1?
- Which are the genes responsible for Dyskeratosis Congenita?
- List blood marker for Non-Hodgkin lymphoma.
- source_sentence: CorrSite identifies potential allosteric ligand-binding sites based
on motion correlation analyses between cavities.We find that CARDS captures allosteric
communication between the two cAMP-Binding Domains (CBDs)Overall, it is demonstrated
that the communication pathways could be multiple and intrinsically disposed,
and the MC path generation approach provides an effective tool for the prediction
of key residues that mediate the allosteric communication in an ensemble of pathways
and functionally plausible residuesWe utilized a data set of 24 known allosteric
sites from 23 monomer proteins to calculate the correlations between potential
ligand-binding sites and corresponding orthosteric sites using a Gaussian network
model (GNM)Here, we introduce the Correlation of All Rotameric and Dynamical States
(CARDS) framework for quantifying correlations between both the structure and
disorder of different regions of a proteinWe present a novel method, "MutInf",
to identify statistically significant correlated motions from equilibrium molecular
dynamics simulationsCorrSite identifies potential allosteric ligand-binding sites
based on motion correlation analyses between cavities.Here, a Monte Carlo (MC)
path generation approach is proposed and implemented to define likely allosteric
pathways through generating an ensemble of maximum probability paths.Here, a Monte
Carlo (MC) path generation approach is proposed and implemented to define likely
allosteric pathways through generating an ensemble of maximum probability paths.
Overall, it is demonstrated that the communication pathways could be multiple
and intrinsically disposed, and the MC path generation approach provides an effective
tool for the prediction of key residues that mediate the allosteric communication
in an ensemble of pathways and functionally plausible residues We utilized a data
set of 24 known allosteric sites from 23 monomer proteins to calculate the correlations
between potential ligand-binding sites and corresponding orthosteric sites using
a Gaussian network model (GNM)A Monte Carlo (MC) path generation approach is proposed
and implemented to define likely allosteric pathways through generating an ensemble
of maximum probability paths. A novel method, "MutInf", to identify statistically
significant correlated motions from equilibrium molecular dynamics simulations.
CorrSite identifies potential alloster-binding sites based on motion correlation
analyses between cavities. The Correlation of All Rotameric and Dynamical States
(CARDS) framework for quantifying correlations between both the structure and
disorder of different regions of a proteinComputational tools for predicting allosteric
pathways in proteins include MCPath, MutInf, pySCA, CorrSite, and CARDS.
sentences:
- Computational tools for predicting allosteric pathways in proteins
- What is PANTHER-PSEP?
- What illness is transmitted by the Lone Star Tick, Amblyomma americanum?
- source_sentence: "Dopaminergic drugs should be given in patients with BMS. \nCatuama\
\ reduces the symptoms of BMS and may be a novel therapeutic strategy for the\
\ treatment of this disease.\nCapsaicin, alpha-lipoic acid (ALA), and clonazepam\
\ were those that showed more reduction in symptoms of BMS.\nTreatment with placebos\
\ produced a response that was 72% as large as the response to active drugs"
sentences:
- What is the cyberknife used for?
- Which compounds exist that are thyroid hormone analogs?
- Which are the drugs utilized for the burning mouth syndrome?
- source_sentence: Tinea is a superficial fungal infections of the skin.
sentences:
- Which molecule is targeted by a monoclonal antibody Mepolizumab?
- What disease is tinea ?
- Which algorithm is used for detection of long repeat expansions?
- source_sentence: Basset is an open source package which applies CNNs to learn the
functional activity of DNA sequences from genomics data. Basset was trained on
a compendium of accessible genomic sites mapped in 164 cell types by DNase-seq,
and demonstrated greater predictive accuracy than previous methods. Basset predictions
for the change in accessibility between variant alleles were far greater for Genome-wide
association study (GWAS) SNPs that are likely to be causal relative to nearby
SNPs in linkage disequilibrium with them. With Basset, a researcher can perform
a single sequencing assay in their cell type of interest and simultaneously learn
that cell's chromatin accessibility code and annotate every mutation in the genome
with its influence on present accessibility and latent potential for accessibility.
Thus, Basset offers a powerful computational approach to annotate and interpret
the noncoding genome.
sentences:
- Givosiran is used for treatment of which disease?
- Describe the applicability of Basset in the context of deep learning
- What is the causative agent of the "Panama disease" affecting bananas?
pipeline_tag: sentence-similarity
model-index:
- name: BGE base BioASQ Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.8432203389830508
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9427966101694916
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.961864406779661
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9788135593220338
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8432203389830508
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3142655367231638
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19237288135593222
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0978813559322034
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8432203389830508
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9427966101694916
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.961864406779661
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9788135593220338
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9167805960832026
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8963327280064567
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8971987609787653
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.8538135593220338
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9427966101694916
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.961864406779661
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9745762711864406
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8538135593220338
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3142655367231638
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19237288135593222
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09745762711864407
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8538135593220338
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9427966101694916
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.961864406779661
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9745762711864406
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9198462326957965
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9016772598870054
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9026755533837086
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.8453389830508474
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9385593220338984
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9555084745762712
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9745762711864406
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8453389830508474
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3128531073446327
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19110169491525425
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09745762711864407
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8453389830508474
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9385593220338984
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9555084745762712
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9745762711864406
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.914207272128957
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8944528517621736
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8952712251263324
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.8220338983050848
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9279661016949152
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9449152542372882
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9703389830508474
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8220338983050848
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3093220338983051
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18898305084745767
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09703389830508474
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8220338983050848
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9279661016949152
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9449152542372882
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9703389830508474
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.901534580728345
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8789800242130752
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8801051507894794
name: Cosine Map@100
---
# BGE base BioASQ Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("pavanmantha/bge-base-en-bioembed768")
# Run inference
sentences = [
"Basset is an open source package which applies CNNs to learn the functional activity of DNA sequences from genomics data. Basset was trained on a compendium of accessible genomic sites mapped in 164 cell types by DNase-seq, and demonstrated greater predictive accuracy than previous methods. Basset predictions for the change in accessibility between variant alleles were far greater for Genome-wide association study (GWAS) SNPs that are likely to be causal relative to nearby SNPs in linkage disequilibrium with them. With Basset, a researcher can perform a single sequencing assay in their cell type of interest and simultaneously learn that cell's chromatin accessibility code and annotate every mutation in the genome with its influence on present accessibility and latent potential for accessibility. Thus, Basset offers a powerful computational approach to annotate and interpret the noncoding genome.",
'Describe the applicability of Basset in the context of deep learning',
'What is the causative agent of the "Panama disease" affecting bananas?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8432 |
| cosine_accuracy@3 | 0.9428 |
| cosine_accuracy@5 | 0.9619 |
| cosine_accuracy@10 | 0.9788 |
| cosine_precision@1 | 0.8432 |
| cosine_precision@3 | 0.3143 |
| cosine_precision@5 | 0.1924 |
| cosine_precision@10 | 0.0979 |
| cosine_recall@1 | 0.8432 |
| cosine_recall@3 | 0.9428 |
| cosine_recall@5 | 0.9619 |
| cosine_recall@10 | 0.9788 |
| cosine_ndcg@10 | 0.9168 |
| cosine_mrr@10 | 0.8963 |
| **cosine_map@100** | **0.8972** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8538 |
| cosine_accuracy@3 | 0.9428 |
| cosine_accuracy@5 | 0.9619 |
| cosine_accuracy@10 | 0.9746 |
| cosine_precision@1 | 0.8538 |
| cosine_precision@3 | 0.3143 |
| cosine_precision@5 | 0.1924 |
| cosine_precision@10 | 0.0975 |
| cosine_recall@1 | 0.8538 |
| cosine_recall@3 | 0.9428 |
| cosine_recall@5 | 0.9619 |
| cosine_recall@10 | 0.9746 |
| cosine_ndcg@10 | 0.9198 |
| cosine_mrr@10 | 0.9017 |
| **cosine_map@100** | **0.9027** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8453 |
| cosine_accuracy@3 | 0.9386 |
| cosine_accuracy@5 | 0.9555 |
| cosine_accuracy@10 | 0.9746 |
| cosine_precision@1 | 0.8453 |
| cosine_precision@3 | 0.3129 |
| cosine_precision@5 | 0.1911 |
| cosine_precision@10 | 0.0975 |
| cosine_recall@1 | 0.8453 |
| cosine_recall@3 | 0.9386 |
| cosine_recall@5 | 0.9555 |
| cosine_recall@10 | 0.9746 |
| cosine_ndcg@10 | 0.9142 |
| cosine_mrr@10 | 0.8945 |
| **cosine_map@100** | **0.8953** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.822 |
| cosine_accuracy@3 | 0.928 |
| cosine_accuracy@5 | 0.9449 |
| cosine_accuracy@10 | 0.9703 |
| cosine_precision@1 | 0.822 |
| cosine_precision@3 | 0.3093 |
| cosine_precision@5 | 0.189 |
| cosine_precision@10 | 0.097 |
| cosine_recall@1 | 0.822 |
| cosine_recall@3 | 0.928 |
| cosine_recall@5 | 0.9449 |
| cosine_recall@10 | 0.9703 |
| cosine_ndcg@10 | 0.9015 |
| cosine_mrr@10 | 0.879 |
| **cosine_map@100** | **0.8801** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 4,247 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 102.44 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 15.78 tokens</li><li>max: 44 tokens</li></ul> |
* Samples:
| positive | anchor |
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------|
| <code>Restless legs syndrome (RLS), also known as Willis-Ekbom disease (WED), is a common movement disorder characterized by an uncontrollable urge to move because of uncomfortable, sometimes painful sensations in the legs with a diurnal variation and a release with movement.</code> | <code>Willis-Ekbom disease is also known as?</code> |
| <code>Report the outcomes of laser in situ keratomileusis (LASIK) for high myopia correction after long-term follow-up['Report the outcomes of laser in situ keratomileusis (LASIK) for high myopia correction after long-term follow-up.']Laser in situ keratomileusis is also known as LASIKLaser in situ keratomileusis (LASIK)</code> | <code>What is another name for keratomileusis?</code> |
| <code>CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them.CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them. CellMaps can easily be integrated in any web page by using an available JavaScript API. Computations and analyses are remotely executed in high-end servers, and all the functionalities are available through RESTful web services. CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them. Computations and analyses are remotely executed in high-end servers, and all the functionalities are available through RESTful web services. CellMaps can easily be integrated in any web page by using an available JavaScript API. CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them. Computations and analyses are remotely executed in high-end servers, and all the functionalities are available through RESTful web services. CellMaps can easily be integrated in any web page by using an available JavaScript API.CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them. CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them. CellMaps can easily be integrated in any web page by using an available JavaScript API. Computations and analyses are remotely executed in high-end servers, and all the functionalities are available through RESTful web services.</code> | <code>What is CellMaps?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128
],
"matryoshka_weights": [
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 10
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `fp16`: True
- `tf32`: False
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: False
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|
| 0.9624 | 8 | - | 0.8560 | 0.8821 | 0.8904 | 0.8876 |
| 1.2030 | 10 | 1.2833 | - | - | - | - |
| 1.9248 | 16 | - | 0.8655 | 0.8808 | 0.8909 | 0.8889 |
| 2.4060 | 20 | 0.4785 | - | - | - | - |
| 2.8872 | 24 | - | 0.8720 | 0.8875 | 0.8893 | 0.8921 |
| 3.6090 | 30 | 0.2417 | - | - | - | - |
| 3.9699 | 33 | - | 0.8751 | 0.8924 | 0.8955 | 0.8960 |
| 4.8120 | 40 | 0.1607 | - | - | - | - |
| 4.9323 | 41 | - | 0.8799 | 0.8932 | 0.8964 | 0.8952 |
| 5.8947 | 49 | - | 0.8785 | 0.8944 | 0.9009 | 0.8982 |
| 6.0150 | 50 | 0.1152 | - | - | - | - |
| **6.9774** | **58** | **-** | **0.8803** | **0.8947** | **0.9018** | **0.8975** |
| 7.2180 | 60 | 0.0924 | - | - | - | - |
| 7.9398 | 66 | - | 0.8802 | 0.8956 | 0.9016 | 0.8973 |
| 8.4211 | 70 | 0.0832 | - | - | - | - |
| 8.9023 | 74 | - | 0.8801 | 0.8956 | 0.9027 | 0.8972 |
| 9.6241 | 80 | 0.074 | 0.8801 | 0.8953 | 0.9027 | 0.8972 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2
- Accelerate: 0.31.0
- Datasets: 2.19.2
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |