File size: 1,407 Bytes
574de86 91406cd 7454b83 91406cd 18720d0 91406cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
---
license: mit
---
# Sentence BERT fine-tuned commodities
This model is part of a collection of fine-tuned Sentence BERT models that were generated with the data of the "TRENCHANT: TRENd PrediCtion on Heterogeneous informAtion NeTworks" article.
Source code and networks are available at the following GitHub repo: https://github.com/paulorvdc/TRENCHANT
## how to cite
```
@article{doCarmo_ReisFilho_Marcacini_2023,
title={TRENCHANT: TRENd PrediCtion on Heterogeneous informAtion NeTworks},
volume={13},
url={https://sol.sbc.org.br/journals/index.php/jidm/article/view/2546},
DOI={10.5753/jidm.2022.2546},
number={6},
journal={Journal of Information and Data Management},
author={do Carmo, P. and Reis Filho, I. J. and Marcacini, R.},
year={2023},
month={Jan.}
}
```
## how to use
```
from sentence_transformers import SentenceTransformer, LoggingHandler
import numpy as np
import logging
# load model
np.set_printoptions(threshold=100)
logging.basicConfig(format='%(asctime)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=logging.INFO,
handlers=[LoggingHandler()])
model = SentenceTransformer('paulorvdc/sentencebert-fine-tuned-months-soy')
finetuned_embeddings = list(model.encode(['Brazilian Corn Acreage Losing out to Higher Priced Soybeans', 'Brazil Soybeans are 93% GMO, Corn is 82%, and Cotton is 66%']))
``` |