File size: 1,407 Bytes
574de86
 
 
91406cd
7454b83
 
91406cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18720d0
91406cd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
---
license: mit
---

# Sentence BERT fine-tuned commodities
This model is part of a collection of fine-tuned Sentence BERT models that were generated with the data of the "TRENCHANT: TRENd PrediCtion on Heterogeneous informAtion NeTworks" article.
Source code and networks are available at the following GitHub repo: https://github.com/paulorvdc/TRENCHANT

## how to cite
```
@article{doCarmo_ReisFilho_Marcacini_2023, 
	title={TRENCHANT: TRENd PrediCtion on Heterogeneous informAtion NeTworks}, 
	volume={13}, 
	url={https://sol.sbc.org.br/journals/index.php/jidm/article/view/2546}, 
	DOI={10.5753/jidm.2022.2546}, 
	number={6}, 
	journal={Journal of Information and Data Management}, 
	author={do Carmo, P. and Reis Filho, I. J. and Marcacini, R.}, 
	year={2023}, 
	month={Jan.} 
}
```

## how to use
```
from sentence_transformers import SentenceTransformer, LoggingHandler
import numpy as np
import logging

# load model
np.set_printoptions(threshold=100)

logging.basicConfig(format='%(asctime)s - %(message)s',
                    datefmt='%Y-%m-%d %H:%M:%S',
                    level=logging.INFO,
                    handlers=[LoggingHandler()])

model = SentenceTransformer('paulorvdc/sentencebert-fine-tuned-months-soy')
finetuned_embeddings = list(model.encode(['Brazilian Corn Acreage Losing out to Higher Priced Soybeans', 'Brazil Soybeans are 93% GMO, Corn is 82%, and Cotton is 66%']))
```