patrickvonplaten
commited on
Commit
·
67b7c36
1
Parent(s):
5cb092a
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- automatic-speech-recognition
|
4 |
+
- timit_asr
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- timit_asr
|
8 |
+
model-index:
|
9 |
+
- name: unispeech-sat-base-plus-timit-ft
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# unispeech-sat-base-plus-timit-ft
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [microsoft/unispeech-sat-base-plus](https://huggingface.co/microsoft/unispeech-sat-base-plus) on the TIMIT_ASR - NA dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.6549
|
21 |
+
- Wer: 0.4051
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 0.0001
|
41 |
+
- train_batch_size: 32
|
42 |
+
- eval_batch_size: 1
|
43 |
+
- seed: 42
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- lr_scheduler_warmup_steps: 1000
|
47 |
+
- num_epochs: 20.0
|
48 |
+
- mixed_precision_training: Native AMP
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
53 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
54 |
+
| 3.3838 | 0.69 | 100 | 3.2528 | 1.0 |
|
55 |
+
| 2.9608 | 1.38 | 200 | 2.9682 | 1.0 |
|
56 |
+
| 2.9574 | 2.07 | 300 | 2.9346 | 1.0 |
|
57 |
+
| 2.8555 | 2.76 | 400 | 2.7612 | 1.0 |
|
58 |
+
| 1.7418 | 3.45 | 500 | 1.5732 | 0.9857 |
|
59 |
+
| 0.9606 | 4.14 | 600 | 1.0014 | 0.7052 |
|
60 |
+
| 0.8334 | 4.83 | 700 | 0.7691 | 0.6161 |
|
61 |
+
| 0.852 | 5.52 | 800 | 0.7169 | 0.5997 |
|
62 |
+
| 0.5707 | 6.21 | 900 | 0.6821 | 0.5527 |
|
63 |
+
| 0.4235 | 6.9 | 1000 | 0.6078 | 0.5140 |
|
64 |
+
| 0.4357 | 7.59 | 1100 | 0.5927 | 0.4982 |
|
65 |
+
| 0.5004 | 8.28 | 1200 | 0.5814 | 0.4826 |
|
66 |
+
| 0.3757 | 8.97 | 1300 | 0.5951 | 0.4643 |
|
67 |
+
| 0.2579 | 9.66 | 1400 | 0.5990 | 0.4581 |
|
68 |
+
| 0.2087 | 10.34 | 1500 | 0.5864 | 0.4488 |
|
69 |
+
| 0.3155 | 11.03 | 1600 | 0.5836 | 0.4464 |
|
70 |
+
| 0.2701 | 11.72 | 1700 | 0.6045 | 0.4348 |
|
71 |
+
| 0.172 | 12.41 | 1800 | 0.6494 | 0.4344 |
|
72 |
+
| 0.1529 | 13.1 | 1900 | 0.5915 | 0.4241 |
|
73 |
+
| 0.2411 | 13.79 | 2000 | 0.6156 | 0.4246 |
|
74 |
+
| 0.2348 | 14.48 | 2100 | 0.6363 | 0.4206 |
|
75 |
+
| 0.1429 | 15.17 | 2200 | 0.6394 | 0.4161 |
|
76 |
+
| 0.1151 | 15.86 | 2300 | 0.6186 | 0.4167 |
|
77 |
+
| 0.1723 | 16.55 | 2400 | 0.6498 | 0.4124 |
|
78 |
+
| 0.1997 | 17.24 | 2500 | 0.6541 | 0.4076 |
|
79 |
+
| 0.1297 | 17.93 | 2600 | 0.6546 | 0.4117 |
|
80 |
+
| 0.101 | 18.62 | 2700 | 0.6471 | 0.4075 |
|
81 |
+
| 0.1272 | 19.31 | 2800 | 0.6586 | 0.4065 |
|
82 |
+
| 0.1901 | 20.0 | 2900 | 0.6549 | 0.4051 |
|
83 |
+
|
84 |
+
|
85 |
+
### Framework versions
|
86 |
+
|
87 |
+
- Transformers 4.12.0.dev0
|
88 |
+
- Pytorch 1.8.1
|
89 |
+
- Datasets 1.14.1.dev0
|
90 |
+
- Tokenizers 0.10.3
|