File size: 3,007 Bytes
3f6db7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
license: apache-2.0
tags:
- automatic-speech-recognition
- librispeech_asr
- generated_from_trainer
model-index:
- name: sew-mid-100k-librispeech-clean-100h-ft
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sew-mid-100k-librispeech-clean-100h-ft
This model is a fine-tuned version of [asapp/sew-mid-100k](https://huggingface.co/asapp/sew-mid-100k) on the LIBRISPEECH_ASR - CLEAN dataset.
It achieves the following results on the evaluation set:
- Loss: 3.9609
- Wer: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---:|
| 2.9558 | 0.11 | 100 | 2.9238 | 1.0 |
| 2.8978 | 0.22 | 200 | 2.9614 | 1.0 |
| 2.9267 | 0.34 | 300 | 3.3049 | 1.0 |
| 3.1351 | 0.45 | 400 | 2.9246 | 1.0 |
| 3.4365 | 0.56 | 500 | 4.2798 | 1.0 |
| 3.1861 | 0.67 | 600 | 4.0740 | 1.0 |
| 2.914 | 0.78 | 700 | 3.6876 | 1.0 |
| 3.0777 | 0.9 | 800 | 3.7421 | 1.0 |
| 2.8181 | 1.01 | 900 | 3.7825 | 1.0 |
| 2.8211 | 1.12 | 1000 | 3.9630 | 1.0 |
| 2.8209 | 1.23 | 1100 | 3.9605 | 1.0 |
| 2.8304 | 1.35 | 1200 | 3.7005 | 1.0 |
| 2.85 | 1.46 | 1300 | 3.5085 | 1.0 |
| 2.8509 | 1.57 | 1400 | 3.6157 | 1.0 |
| 2.8643 | 1.68 | 1500 | 3.5116 | 1.0 |
| 2.8265 | 1.79 | 1600 | 3.6322 | 1.0 |
| 2.8032 | 1.91 | 1700 | 4.0325 | 1.0 |
| 2.8053 | 2.02 | 1800 | 4.0125 | 1.0 |
| 2.819 | 2.13 | 1900 | 3.7971 | 1.0 |
| 2.8163 | 2.24 | 2000 | 3.9216 | 1.0 |
| 2.8214 | 2.35 | 2100 | 3.9178 | 1.0 |
| 2.8116 | 2.47 | 2200 | 3.9604 | 1.0 |
| 2.81 | 2.58 | 2300 | 3.9279 | 1.0 |
| 2.8051 | 2.69 | 2400 | 3.9737 | 1.0 |
| 2.8179 | 2.8 | 2500 | 3.9725 | 1.0 |
| 2.8098 | 2.91 | 2600 | 3.9591 | 1.0 |
### Framework versions
- Transformers 4.12.0.dev0
- Pytorch 1.9.0+cu111
- Datasets 1.13.4.dev0
- Tokenizers 0.10.3
|