patrickvonplaten
commited on
Commit
•
8ee1677
1
Parent(s):
aa1513b
up
Browse files- README.md +43 -0
- model/dict.txt +0 -0
- model/gpt2-merges.txt +0 -0
- model/gpt2-vocab.json +0 -0
- model/merges.txt +0 -0
- model/restored.pt +3 -0
- model/special_tokens_map.json +1 -0
- model/tokenizer_config.json +1 -0
- model/vocab.json +0 -0
- run.sh +2 -0
- run_model.py +65 -0
README.md
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- opt_metasq
|
4 |
+
---
|
5 |
+
|
6 |
+
# This repo let's you run the following checkpoint using facebookresearch/metaseq.
|
7 |
+
|
8 |
+
Do the following:
|
9 |
+
|
10 |
+
## 1. Install PyTorch
|
11 |
+
```
|
12 |
+
pip3 install torch==1.10.1+cu113 torchvision==0.11.2+cu113 torchaudio==0.10.1+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html
|
13 |
+
```
|
14 |
+
|
15 |
+
## 2. Install Megatron
|
16 |
+
```
|
17 |
+
git clone https://github.com/patrickvonplaten/Megatron-LM.git
|
18 |
+
cd Megatron-LM
|
19 |
+
pip3 install six regex
|
20 |
+
pip3 install -e .
|
21 |
+
```
|
22 |
+
## 3. Install fairscale
|
23 |
+
```
|
24 |
+
git clone https://github.com/facebookresearch/fairscale.git
|
25 |
+
cd fairscale
|
26 |
+
git checkout prefetch_fsdp_params_simple
|
27 |
+
pip3 install -e .
|
28 |
+
```
|
29 |
+
## 4. Install metaseq
|
30 |
+
```
|
31 |
+
git clone https://github.com/patrickvonplaten/metaseq.git
|
32 |
+
cd metaseq
|
33 |
+
pip3 install -e .
|
34 |
+
```
|
35 |
+
|
36 |
+
## 5. Clone this repo (click top right on "How to clone")
|
37 |
+
|
38 |
+
## 6. Run the following:
|
39 |
+
|
40 |
+
```bash
|
41 |
+
cd <path/to/cloned/repo>
|
42 |
+
bash run.sh
|
43 |
+
```
|
model/dict.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model/gpt2-merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model/gpt2-vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model/restored.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f76f91b201a0f295cea6cd41c09526d530559ba4ea72cd6b5c536b12d6a202d4
|
3 |
+
size 714040635
|
model/special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "eos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "unk_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}}
|
model/tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"errors": "replace", "unk_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "bos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "add_prefix_space": false, "tokenizer_class": "GPT2Tokenizer"}
|
model/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
run.sh
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
CUDA_VISIBLE_DEVICES="0" torchrun run_model.py --pipeline-model-parallel-size 1 --tensor-model-parallel-size 1
|
run_model.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
#!/usr/bin/env python3
|
3 |
+
import os
|
4 |
+
from transformers import AutoTokenizer, GPT2Tokenizer
|
5 |
+
from megatron.initialize import initialize_megatron
|
6 |
+
from metaseq import checkpoint_utils
|
7 |
+
import torch
|
8 |
+
|
9 |
+
path = "./model"
|
10 |
+
|
11 |
+
# just need to initialize args with something,
|
12 |
+
# => doesn't need to correspond to the "correct" architecture for this checkpoint
|
13 |
+
initialize_megatron(args_defaults={
|
14 |
+
"micro_batch_size": 1,
|
15 |
+
"num_layers": 12,
|
16 |
+
"hidden_size": 768,
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"max_position_embeddings": 2048,
|
19 |
+
"encoder_seq_length": 2048
|
20 |
+
})
|
21 |
+
|
22 |
+
vocab_file = os.path.join(path, "gpt2-vocab.json")
|
23 |
+
merges_file = os.path.join(path, "gpt2-merges.txt")
|
24 |
+
|
25 |
+
tokenizer = GPT2Tokenizer(vocab_file, merges_file)
|
26 |
+
tokenizer.save_pretrained(path)
|
27 |
+
|
28 |
+
checkpoint = checkpoint_utils.load_model_ensemble_and_task(
|
29 |
+
[os.path.join(path, "restored.pt")],
|
30 |
+
arg_overrides={
|
31 |
+
"vocab_filename": vocab_file,
|
32 |
+
"merges_filename": merges_file,
|
33 |
+
}
|
34 |
+
)
|
35 |
+
|
36 |
+
model = checkpoint[0][0].eval()
|
37 |
+
model = model.cuda().half()
|
38 |
+
|
39 |
+
|
40 |
+
# forward passes
|
41 |
+
def single_batch_forward_logits(prompts):
|
42 |
+
input_ids = tokenizer(prompts, return_tensors="pt").input_ids
|
43 |
+
input_ids = torch.cat([torch.tensor([[0]]), input_ids], dim=-1)
|
44 |
+
input_ids = input_ids.cuda()
|
45 |
+
with torch.no_grad():
|
46 |
+
logits = model(input_ids)[0]
|
47 |
+
return logits
|
48 |
+
|
49 |
+
prompts = [
|
50 |
+
"Today is a beautiful day and I want to",
|
51 |
+
"In the city of",
|
52 |
+
"Paris is the capital of France and",
|
53 |
+
"Computers and mobile phones have taken",
|
54 |
+
]
|
55 |
+
|
56 |
+
print("Next word generation")
|
57 |
+
for prompt in prompts:
|
58 |
+
print("-------------")
|
59 |
+
print(f"Prompt: {prompt}...\n")
|
60 |
+
logits = single_batch_forward_logits(prompt)
|
61 |
+
pred_next_token = torch.argmax(logits[0, -1], -1)
|
62 |
+
next_token = tokenizer.convert_ids_to_tokens([pred_next_token])
|
63 |
+
next_token = next_token[0].replace("Ġ", "")
|
64 |
+
print(f"Next word: {next_token}")
|
65 |
+
print("-------------")
|