File size: 1,765 Bytes
526c544
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c1f0eb
 
 
 
 
526c544
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42cfb45
7a55284
f8dc89b
c3eef95
0c1f0eb
526c544
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
license: apache-2.0
base_model: Helsinki-NLP/opus-mt-en-zh
tags:
- generated_from_keras_callback
model-index:
- name: pastells/en-zh-test
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# pastells/en-zh-test

This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-zh](https://huggingface.co/Helsinki-NLP/opus-mt-en-zh) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 3.6747
- Validation Loss: 4.4216
- Train Bleu: 0.0097
- Train Gen Len: 100.1395
- Epoch: 4

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Train Bleu | Train Gen Len | Epoch |
|:----------:|:---------------:|:----------:|:-------------:|:-----:|
| 4.4659     | 4.4875          | 0.0102     | 99.2093       | 0     |
| 4.2023     | 4.4382          | 0.0588     | 34.8372       | 1     |
| 4.0009     | 4.4255          | 0.0568     | 34.5116       | 2     |
| 3.8234     | 4.4239          | 0.0641     | 33.3488       | 3     |
| 3.6747     | 4.4216          | 0.0097     | 100.1395      | 4     |


### Framework versions

- Transformers 4.41.1
- TensorFlow 2.15.0
- Datasets 2.19.1
- Tokenizers 0.19.1