pastells commited on
Commit
44fd644
·
1 Parent(s): 13b6e7a

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.04 +/- 0.64
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8b78e8366fbdc1080787fbbf8a9a3aa0e01956a5def3549641d8b89d1de9366
3
+ size 107992
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fb7faa9e820>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7fb7faa9cf80>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1680530777918675236,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAALH3lPlAKijxUjDQ/LH3lPlAKijxUjDQ/LH3lPlAKijxUjDQ/LH3lPlAKijxUjDQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuHmJv1YrsD/2L8C/sho+v4lynD7F7p8+CIn9vkkAib7eqcS+P8bHP1kRYL6O4nu/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAsfeU+UAqKPFSMND8/mF48bXUhO358uTwsfeU+UAqKPFSMND8/mF48bXUhO358uTwsfeU+UAqKPFSMND8/mF48bXUhO358uTwsfeU+UAqKPFSMND8/mF48bXUhO358uTyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.4482206 0.01685062 0.70526624]\n [0.4482206 0.01685062 0.70526624]\n [0.4482206 0.01685062 0.70526624]\n [0.4482206 0.01685062 0.70526624]]",
60
+ "desired_goal": "[[-1.0740271 1.3763225 -1.5014637 ]\n [-0.74259484 0.30556133 0.31236854]\n [-0.4951861 -0.2675803 -0.38410848]\n [ 1.5607375 -0.21881618 -0.9839257 ]]",
61
+ "observation": "[[0.4482206 0.01685062 0.70526624 0.0135861 0.00246366 0.02264237]\n [0.4482206 0.01685062 0.70526624 0.0135861 0.00246366 0.02264237]\n [0.4482206 0.01685062 0.70526624 0.0135861 0.00246366 0.02264237]\n [0.4482206 0.01685062 0.70526624 0.0135861 0.00246366 0.02264237]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEduAPciVtjzs/YI+j20KPeDoAT5DFCI9+Zj+vbikzD2Jz3g+49lRPA8Ptzxr+Gg9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.06291784 0.02228822 0.25584352]\n [ 0.03379589 0.12686491 0.0395701 ]\n [-0.12431521 0.09992355 0.24297918]\n [ 0.0128083 0.02234605 0.05687753]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMICB10CYc+A8CUhpRSlIwBbJRLMowBdJRHQKaJqkHlfZ51fZQoaAZoCWgPQwhJSQ9Dq3MAwJSGlFKUaBVLMmgWR0CmiWh/7SApdX2UKGgGaAloD0MIZeJWQQy0+7+UhpRSlGgVSzJoFkdApokrXjENv3V9lChoBmgJaA9DCAlvD0JAfvu/lIaUUpRoFUsyaBZHQKaI7lFtsN51fZQoaAZoCWgPQwjHuU24V4YCwJSGlFKUaBVLMmgWR0CmipDtoi9qdX2UKGgGaAloD0MIdovAWN8gAcCUhpRSlGgVSzJoFkdApopPEyckMXV9lChoBmgJaA9DCJ/jo8UZgwXAlIaUUpRoFUsyaBZHQKaKEZaV2Rt1fZQoaAZoCWgPQwi9jGK5pVX9v5SGlFKUaBVLMmgWR0CmidSLhrFgdX2UKGgGaAloD0MIjdMQVfhzAcCUhpRSlGgVSzJoFkdApouZVAAyVXV9lChoBmgJaA9DCHpuoSsRCALAlIaUUpRoFUsyaBZHQKaLV9XLeRB1fZQoaAZoCWgPQwiWQbXBiagCwJSGlFKUaBVLMmgWR0Cmixpyhi9adX2UKGgGaAloD0MI9fHQd7dyBMCUhpRSlGgVSzJoFkdApordeIEbHnV9lChoBmgJaA9DCEmERrBx/f+/lIaUUpRoFUsyaBZHQKaMgKqn3td1fZQoaAZoCWgPQwg+0AoMWX0KwJSGlFKUaBVLMmgWR0CmjD71ZkkKdX2UKGgGaAloD0MI/DTuzW8YCsCUhpRSlGgVSzJoFkdApowBdld1MnV9lChoBmgJaA9DCKc9JefE3v2/lIaUUpRoFUsyaBZHQKaLxG+9Jz11fZQoaAZoCWgPQwhiZp/HKM/7v5SGlFKUaBVLMmgWR0CmjWn8KohqdX2UKGgGaAloD0MI/Wg4ZW4eBcCUhpRSlGgVSzJoFkdApo0oKa5PM3V9lChoBmgJaA9DCCeloNtLWvy/lIaUUpRoFUsyaBZHQKaM6sFt8/l1fZQoaAZoCWgPQwhEMA4uHfMFwJSGlFKUaBVLMmgWR0CmjK24EwFldX2UKGgGaAloD0MIRDNPrimQBsCUhpRSlGgVSzJoFkdApo5WsV+I/XV9lChoBmgJaA9DCEMEHEKVGgHAlIaUUpRoFUsyaBZHQKaOFPrv9cd1fZQoaAZoCWgPQwg/yR02kVn8v5SGlFKUaBVLMmgWR0CmjdfL1VYIdX2UKGgGaAloD0MIOpShKqYSAMCUhpRSlGgVSzJoFkdApo2avV3EAHV9lChoBmgJaA9DCKORzyueOgDAlIaUUpRoFUsyaBZHQKaPO3fhuO11fZQoaAZoCWgPQwhfl+E/3cAKwJSGlFKUaBVLMmgWR0Cmjvmo73fydX2UKGgGaAloD0MID/J6MCneBMCUhpRSlGgVSzJoFkdApo68L+glGHV9lChoBmgJaA9DCKHa4ET0a/6/lIaUUpRoFUsyaBZHQKaOfyuIRAd1fZQoaAZoCWgPQwh+NQcI5ugAwJSGlFKUaBVLMmgWR0CmkCR7RfF8dX2UKGgGaAloD0MIcHmsGRlkBMCUhpRSlGgVSzJoFkdApo/i6Ymb9nV9lChoBmgJaA9DCOvDeqNWWAvAlIaUUpRoFUsyaBZHQKaPpXiiqQ11fZQoaAZoCWgPQwjNBMO5hjkDwJSGlFKUaBVLMmgWR0Cmj2iD28IzdX2UKGgGaAloD0MIEK6AQj09AMCUhpRSlGgVSzJoFkdAppEKFmFrVXV9lChoBmgJaA9DCHQK8rORKwDAlIaUUpRoFUsyaBZHQKaQySs8xKx1fZQoaAZoCWgPQwgsfeiC+pb8v5SGlFKUaBVLMmgWR0CmkIwLeANHdX2UKGgGaAloD0MIK1CLwcO0+r+UhpRSlGgVSzJoFkdAppBPCl7+k3V9lChoBmgJaA9DCFPOF3sv3gjAlIaUUpRoFUsyaBZHQKaR9vqkdmx1fZQoaAZoCWgPQwhprP2d7TEHwJSGlFKUaBVLMmgWR0CmkbUm2LHddX2UKGgGaAloD0MIZJXSM72kAMCUhpRSlGgVSzJoFkdAppF3sJIDo3V9lChoBmgJaA9DCK97KxITVAHAlIaUUpRoFUsyaBZHQKaROulGgBd1fZQoaAZoCWgPQwhD44kgziMCwJSGlFKUaBVLMmgWR0CmkuFINEw4dX2UKGgGaAloD0MITmA6rdsg/7+UhpRSlGgVSzJoFkdAppKfZTQ3P3V9lChoBmgJaA9DCHswKT4+of+/lIaUUpRoFUsyaBZHQKaSYejmCAd1fZQoaAZoCWgPQwgIxyx7EngDwJSGlFKUaBVLMmgWR0CmkiTZYgaFdX2UKGgGaAloD0MIRRDn4QQGAMCUhpRSlGgVSzJoFkdAppPVuaWonHV9lChoBmgJaA9DCCKphZLJKQXAlIaUUpRoFUsyaBZHQKaTlAjY7JZ1fZQoaAZoCWgPQwivesA8ZEr9v5SGlFKUaBVLMmgWR0Cmk1aXSjQBdX2UKGgGaAloD0MIS3SWWYQi/L+UhpRSlGgVSzJoFkdAppMZnctXgnV9lChoBmgJaA9DCDlDcceb3AHAlIaUUpRoFUsyaBZHQKaUv1XeWOZ1fZQoaAZoCWgPQwjUtmEUBC8FwJSGlFKUaBVLMmgWR0CmlH1q33HrdX2UKGgGaAloD0MIdcjNcAM+AsCUhpRSlGgVSzJoFkdAppQ/9BKL9HV9lChoBmgJaA9DCIRkARO4VQLAlIaUUpRoFUsyaBZHQKaUAvmozep1fZQoaAZoCWgPQwg08nnFU0/3v5SGlFKUaBVLMmgWR0CmlashxHXmdX2UKGgGaAloD0MI1cvvNJnxAMCUhpRSlGgVSzJoFkdAppVpQxesxXV9lChoBmgJaA9DCPmdJjPe1vm/lIaUUpRoFUsyaBZHQKaVK8mKIi11fZQoaAZoCWgPQwiVumQcI5n6v5SGlFKUaBVLMmgWR0CmlO6+WWyDdX2UKGgGaAloD0MI9OFZgozA/7+UhpRSlGgVSzJoFkdAppaUI/qxDHV9lChoBmgJaA9DCBBbejTVk/2/lIaUUpRoFUsyaBZHQKaWUpo9LYh1fZQoaAZoCWgPQwip+L8jKtT2v5SGlFKUaBVLMmgWR0CmlhU3wTdtdX2UKGgGaAloD0MIi/7QzJMr/7+UhpRSlGgVSzJoFkdAppXYMWoFV3V9lChoBmgJaA9DCKz9ne3R+wjAlIaUUpRoFUsyaBZHQKaXjhlUZNx1fZQoaAZoCWgPQwhhpBe1+1X0v5SGlFKUaBVLMmgWR0Cml0xHoX9BdX2UKGgGaAloD0MIA0TBjCkY/L+UhpRSlGgVSzJoFkdAppcOx8lXzXV9lChoBmgJaA9DCF3DDI0nAgHAlIaUUpRoFUsyaBZHQKaW0dV/+bV1fZQoaAZoCWgPQwiet7HZkWr6v5SGlFKUaBVLMmgWR0CmmHbr1M/RdX2UKGgGaAloD0MIWTZzSGph+b+UhpRSlGgVSzJoFkdAppg1CRfWtnV9lChoBmgJaA9DCKmI00m2egDAlIaUUpRoFUsyaBZHQKaX968g6lt1fZQoaAZoCWgPQwjaHyi37Xv6v5SGlFKUaBVLMmgWR0Cml7qfOD8MdX2UKGgGaAloD0MILZPheD6D97+UhpRSlGgVSzJoFkdAppldx2jfvXV9lChoBmgJaA9DCFkYIqevp/y/lIaUUpRoFUsyaBZHQKaZG+lCTll1fZQoaAZoCWgPQwi5Nem2RG4EwJSGlFKUaBVLMmgWR0CmmN58a4tpdX2UKGgGaAloD0MI+1dWmpQCAcCUhpRSlGgVSzJoFkdAppihpHqeLHV9lChoBmgJaA9DCDTW/s72iAPAlIaUUpRoFUsyaBZHQKaaim65Gz91fZQoaAZoCWgPQwh0eXO4VrsFwJSGlFKUaBVLMmgWR0CmmklEqlP8dX2UKGgGaAloD0MIzeUGQx2W/7+UhpRSlGgVSzJoFkdAppoNINEw4HV9lChoBmgJaA9DCEM9fQT+8P2/lIaUUpRoFUsyaBZHQKaZ0TvAoG91fZQoaAZoCWgPQwiWsgxxrOsBwJSGlFKUaBVLMmgWR0CmnALsjVx0dX2UKGgGaAloD0MIfo6PFmdMBcCUhpRSlGgVSzJoFkdAppvBuyeI23V9lChoBmgJaA9DCBLAzeLFAv2/lIaUUpRoFUsyaBZHQKabhg3tKI11fZQoaAZoCWgPQwjf3F897lv7v5SGlFKUaBVLMmgWR0Cmm0nhKlHjdX2UKGgGaAloD0MIOWHCaFbWA8CUhpRSlGgVSzJoFkdApp1yUFB6bHV9lChoBmgJaA9DCElm9Q63g/y/lIaUUpRoFUsyaBZHQKadMS26TW51fZQoaAZoCWgPQwjBdFq3Qa38v5SGlFKUaBVLMmgWR0CmnPRptaZAdX2UKGgGaAloD0MInkFD/wTX8r+UhpRSlGgVSzJoFkdAppy4GQjlgnV9lChoBmgJaA9DCACpTZzcr/W/lIaUUpRoFUsyaBZHQKae96uW8h91fZQoaAZoCWgPQwjVljrI66EAwJSGlFKUaBVLMmgWR0CmnrdAood/dX2UKGgGaAloD0MIotCy7h+L+L+UhpRSlGgVSzJoFkdApp565NGmUHV9lChoBmgJaA9DCNVd2QWDq/O/lIaUUpRoFUsyaBZHQKaePwDvE0l1fZQoaAZoCWgPQwiA1vz4SwsAwJSGlFKUaBVLMmgWR0CmoKCiZfD2dX2UKGgGaAloD0MIswbvq3Lh9b+UhpRSlGgVSzJoFkdApqBf+ZPVNHV9lChoBmgJaA9DCEsEqn8QyfS/lIaUUpRoFUsyaBZHQKagI7TUiIN1fZQoaAZoCWgPQwjggJauYNv9v5SGlFKUaBVLMmgWR0Cmn+dDpkf+dX2UKGgGaAloD0MIt9Jrs7GS87+UhpRSlGgVSzJoFkdApqIe8TSLInV9lChoBmgJaA9DCHREvkupi/i/lIaUUpRoFUsyaBZHQKah3kZJkG11fZQoaAZoCWgPQwgrTyDsFKvzv5SGlFKUaBVLMmgWR0CmoaGDUVi4dX2UKGgGaAloD0MIDJOpglEJ/L+UhpRSlGgVSzJoFkdApqFlKbrkbXV9lChoBmgJaA9DCIOluoCXmfe/lIaUUpRoFUsyaBZHQKajvGhEjPh1fZQoaAZoCWgPQwjvqDEh5lL+v5SGlFKUaBVLMmgWR0Cmo3tWuHN5dX2UKGgGaAloD0MItMnhk07k/L+UhpRSlGgVSzJoFkdApqM+i+L3sXV9lChoBmgJaA9DCMCWV663jQDAlIaUUpRoFUsyaBZHQKajAkPczqN1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85942a24389c1c4e8faf87ec9922904b5d6e238a817dfc5e0f7bef45bedf7c08
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:75d9bb261601aa467e4e1b0742992beaa49563cfdb42a07985186b4b441b4f5e
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fb7faa9e820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb7faa9cf80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680530777918675236, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAALH3lPlAKijxUjDQ/LH3lPlAKijxUjDQ/LH3lPlAKijxUjDQ/LH3lPlAKijxUjDQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuHmJv1YrsD/2L8C/sho+v4lynD7F7p8+CIn9vkkAib7eqcS+P8bHP1kRYL6O4nu/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAsfeU+UAqKPFSMND8/mF48bXUhO358uTwsfeU+UAqKPFSMND8/mF48bXUhO358uTwsfeU+UAqKPFSMND8/mF48bXUhO358uTwsfeU+UAqKPFSMND8/mF48bXUhO358uTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4482206 0.01685062 0.70526624]\n [0.4482206 0.01685062 0.70526624]\n [0.4482206 0.01685062 0.70526624]\n [0.4482206 0.01685062 0.70526624]]", "desired_goal": "[[-1.0740271 1.3763225 -1.5014637 ]\n [-0.74259484 0.30556133 0.31236854]\n [-0.4951861 -0.2675803 -0.38410848]\n [ 1.5607375 -0.21881618 -0.9839257 ]]", "observation": "[[0.4482206 0.01685062 0.70526624 0.0135861 0.00246366 0.02264237]\n [0.4482206 0.01685062 0.70526624 0.0135861 0.00246366 0.02264237]\n [0.4482206 0.01685062 0.70526624 0.0135861 0.00246366 0.02264237]\n [0.4482206 0.01685062 0.70526624 0.0135861 0.00246366 0.02264237]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEduAPciVtjzs/YI+j20KPeDoAT5DFCI9+Zj+vbikzD2Jz3g+49lRPA8Ptzxr+Gg9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.06291784 0.02228822 0.25584352]\n [ 0.03379589 0.12686491 0.0395701 ]\n [-0.12431521 0.09992355 0.24297918]\n [ 0.0128083 0.02234605 0.05687753]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMICB10CYc+A8CUhpRSlIwBbJRLMowBdJRHQKaJqkHlfZ51fZQoaAZoCWgPQwhJSQ9Dq3MAwJSGlFKUaBVLMmgWR0CmiWh/7SApdX2UKGgGaAloD0MIZeJWQQy0+7+UhpRSlGgVSzJoFkdApokrXjENv3V9lChoBmgJaA9DCAlvD0JAfvu/lIaUUpRoFUsyaBZHQKaI7lFtsN51fZQoaAZoCWgPQwjHuU24V4YCwJSGlFKUaBVLMmgWR0CmipDtoi9qdX2UKGgGaAloD0MIdovAWN8gAcCUhpRSlGgVSzJoFkdApopPEyckMXV9lChoBmgJaA9DCJ/jo8UZgwXAlIaUUpRoFUsyaBZHQKaKEZaV2Rt1fZQoaAZoCWgPQwi9jGK5pVX9v5SGlFKUaBVLMmgWR0CmidSLhrFgdX2UKGgGaAloD0MIjdMQVfhzAcCUhpRSlGgVSzJoFkdApouZVAAyVXV9lChoBmgJaA9DCHpuoSsRCALAlIaUUpRoFUsyaBZHQKaLV9XLeRB1fZQoaAZoCWgPQwiWQbXBiagCwJSGlFKUaBVLMmgWR0Cmixpyhi9adX2UKGgGaAloD0MI9fHQd7dyBMCUhpRSlGgVSzJoFkdApordeIEbHnV9lChoBmgJaA9DCEmERrBx/f+/lIaUUpRoFUsyaBZHQKaMgKqn3td1fZQoaAZoCWgPQwg+0AoMWX0KwJSGlFKUaBVLMmgWR0CmjD71ZkkKdX2UKGgGaAloD0MI/DTuzW8YCsCUhpRSlGgVSzJoFkdApowBdld1MnV9lChoBmgJaA9DCKc9JefE3v2/lIaUUpRoFUsyaBZHQKaLxG+9Jz11fZQoaAZoCWgPQwhiZp/HKM/7v5SGlFKUaBVLMmgWR0CmjWn8KohqdX2UKGgGaAloD0MI/Wg4ZW4eBcCUhpRSlGgVSzJoFkdApo0oKa5PM3V9lChoBmgJaA9DCCeloNtLWvy/lIaUUpRoFUsyaBZHQKaM6sFt8/l1fZQoaAZoCWgPQwhEMA4uHfMFwJSGlFKUaBVLMmgWR0CmjK24EwFldX2UKGgGaAloD0MIRDNPrimQBsCUhpRSlGgVSzJoFkdApo5WsV+I/XV9lChoBmgJaA9DCEMEHEKVGgHAlIaUUpRoFUsyaBZHQKaOFPrv9cd1fZQoaAZoCWgPQwg/yR02kVn8v5SGlFKUaBVLMmgWR0CmjdfL1VYIdX2UKGgGaAloD0MIOpShKqYSAMCUhpRSlGgVSzJoFkdApo2avV3EAHV9lChoBmgJaA9DCKORzyueOgDAlIaUUpRoFUsyaBZHQKaPO3fhuO11fZQoaAZoCWgPQwhfl+E/3cAKwJSGlFKUaBVLMmgWR0Cmjvmo73fydX2UKGgGaAloD0MID/J6MCneBMCUhpRSlGgVSzJoFkdApo68L+glGHV9lChoBmgJaA9DCKHa4ET0a/6/lIaUUpRoFUsyaBZHQKaOfyuIRAd1fZQoaAZoCWgPQwh+NQcI5ugAwJSGlFKUaBVLMmgWR0CmkCR7RfF8dX2UKGgGaAloD0MIcHmsGRlkBMCUhpRSlGgVSzJoFkdApo/i6Ymb9nV9lChoBmgJaA9DCOvDeqNWWAvAlIaUUpRoFUsyaBZHQKaPpXiiqQ11fZQoaAZoCWgPQwjNBMO5hjkDwJSGlFKUaBVLMmgWR0Cmj2iD28IzdX2UKGgGaAloD0MIEK6AQj09AMCUhpRSlGgVSzJoFkdAppEKFmFrVXV9lChoBmgJaA9DCHQK8rORKwDAlIaUUpRoFUsyaBZHQKaQySs8xKx1fZQoaAZoCWgPQwgsfeiC+pb8v5SGlFKUaBVLMmgWR0CmkIwLeANHdX2UKGgGaAloD0MIK1CLwcO0+r+UhpRSlGgVSzJoFkdAppBPCl7+k3V9lChoBmgJaA9DCFPOF3sv3gjAlIaUUpRoFUsyaBZHQKaR9vqkdmx1fZQoaAZoCWgPQwhprP2d7TEHwJSGlFKUaBVLMmgWR0CmkbUm2LHddX2UKGgGaAloD0MIZJXSM72kAMCUhpRSlGgVSzJoFkdAppF3sJIDo3V9lChoBmgJaA9DCK97KxITVAHAlIaUUpRoFUsyaBZHQKaROulGgBd1fZQoaAZoCWgPQwhD44kgziMCwJSGlFKUaBVLMmgWR0CmkuFINEw4dX2UKGgGaAloD0MITmA6rdsg/7+UhpRSlGgVSzJoFkdAppKfZTQ3P3V9lChoBmgJaA9DCHswKT4+of+/lIaUUpRoFUsyaBZHQKaSYejmCAd1fZQoaAZoCWgPQwgIxyx7EngDwJSGlFKUaBVLMmgWR0CmkiTZYgaFdX2UKGgGaAloD0MIRRDn4QQGAMCUhpRSlGgVSzJoFkdAppPVuaWonHV9lChoBmgJaA9DCCKphZLJKQXAlIaUUpRoFUsyaBZHQKaTlAjY7JZ1fZQoaAZoCWgPQwivesA8ZEr9v5SGlFKUaBVLMmgWR0Cmk1aXSjQBdX2UKGgGaAloD0MIS3SWWYQi/L+UhpRSlGgVSzJoFkdAppMZnctXgnV9lChoBmgJaA9DCDlDcceb3AHAlIaUUpRoFUsyaBZHQKaUv1XeWOZ1fZQoaAZoCWgPQwjUtmEUBC8FwJSGlFKUaBVLMmgWR0CmlH1q33HrdX2UKGgGaAloD0MIdcjNcAM+AsCUhpRSlGgVSzJoFkdAppQ/9BKL9HV9lChoBmgJaA9DCIRkARO4VQLAlIaUUpRoFUsyaBZHQKaUAvmozep1fZQoaAZoCWgPQwg08nnFU0/3v5SGlFKUaBVLMmgWR0CmlashxHXmdX2UKGgGaAloD0MI1cvvNJnxAMCUhpRSlGgVSzJoFkdAppVpQxesxXV9lChoBmgJaA9DCPmdJjPe1vm/lIaUUpRoFUsyaBZHQKaVK8mKIi11fZQoaAZoCWgPQwiVumQcI5n6v5SGlFKUaBVLMmgWR0CmlO6+WWyDdX2UKGgGaAloD0MI9OFZgozA/7+UhpRSlGgVSzJoFkdAppaUI/qxDHV9lChoBmgJaA9DCBBbejTVk/2/lIaUUpRoFUsyaBZHQKaWUpo9LYh1fZQoaAZoCWgPQwip+L8jKtT2v5SGlFKUaBVLMmgWR0CmlhU3wTdtdX2UKGgGaAloD0MIi/7QzJMr/7+UhpRSlGgVSzJoFkdAppXYMWoFV3V9lChoBmgJaA9DCKz9ne3R+wjAlIaUUpRoFUsyaBZHQKaXjhlUZNx1fZQoaAZoCWgPQwhhpBe1+1X0v5SGlFKUaBVLMmgWR0Cml0xHoX9BdX2UKGgGaAloD0MIA0TBjCkY/L+UhpRSlGgVSzJoFkdAppcOx8lXzXV9lChoBmgJaA9DCF3DDI0nAgHAlIaUUpRoFUsyaBZHQKaW0dV/+bV1fZQoaAZoCWgPQwiet7HZkWr6v5SGlFKUaBVLMmgWR0CmmHbr1M/RdX2UKGgGaAloD0MIWTZzSGph+b+UhpRSlGgVSzJoFkdAppg1CRfWtnV9lChoBmgJaA9DCKmI00m2egDAlIaUUpRoFUsyaBZHQKaX968g6lt1fZQoaAZoCWgPQwjaHyi37Xv6v5SGlFKUaBVLMmgWR0Cml7qfOD8MdX2UKGgGaAloD0MILZPheD6D97+UhpRSlGgVSzJoFkdAppldx2jfvXV9lChoBmgJaA9DCFkYIqevp/y/lIaUUpRoFUsyaBZHQKaZG+lCTll1fZQoaAZoCWgPQwi5Nem2RG4EwJSGlFKUaBVLMmgWR0CmmN58a4tpdX2UKGgGaAloD0MI+1dWmpQCAcCUhpRSlGgVSzJoFkdAppihpHqeLHV9lChoBmgJaA9DCDTW/s72iAPAlIaUUpRoFUsyaBZHQKaaim65Gz91fZQoaAZoCWgPQwh0eXO4VrsFwJSGlFKUaBVLMmgWR0CmmklEqlP8dX2UKGgGaAloD0MIzeUGQx2W/7+UhpRSlGgVSzJoFkdAppoNINEw4HV9lChoBmgJaA9DCEM9fQT+8P2/lIaUUpRoFUsyaBZHQKaZ0TvAoG91fZQoaAZoCWgPQwiWsgxxrOsBwJSGlFKUaBVLMmgWR0CmnALsjVx0dX2UKGgGaAloD0MIfo6PFmdMBcCUhpRSlGgVSzJoFkdAppvBuyeI23V9lChoBmgJaA9DCBLAzeLFAv2/lIaUUpRoFUsyaBZHQKabhg3tKI11fZQoaAZoCWgPQwjf3F897lv7v5SGlFKUaBVLMmgWR0Cmm0nhKlHjdX2UKGgGaAloD0MIOWHCaFbWA8CUhpRSlGgVSzJoFkdApp1yUFB6bHV9lChoBmgJaA9DCElm9Q63g/y/lIaUUpRoFUsyaBZHQKadMS26TW51fZQoaAZoCWgPQwjBdFq3Qa38v5SGlFKUaBVLMmgWR0CmnPRptaZAdX2UKGgGaAloD0MInkFD/wTX8r+UhpRSlGgVSzJoFkdAppy4GQjlgnV9lChoBmgJaA9DCACpTZzcr/W/lIaUUpRoFUsyaBZHQKae96uW8h91fZQoaAZoCWgPQwjVljrI66EAwJSGlFKUaBVLMmgWR0CmnrdAood/dX2UKGgGaAloD0MIotCy7h+L+L+UhpRSlGgVSzJoFkdApp565NGmUHV9lChoBmgJaA9DCNVd2QWDq/O/lIaUUpRoFUsyaBZHQKaePwDvE0l1fZQoaAZoCWgPQwiA1vz4SwsAwJSGlFKUaBVLMmgWR0CmoKCiZfD2dX2UKGgGaAloD0MIswbvq3Lh9b+UhpRSlGgVSzJoFkdApqBf+ZPVNHV9lChoBmgJaA9DCEsEqn8QyfS/lIaUUpRoFUsyaBZHQKagI7TUiIN1fZQoaAZoCWgPQwjggJauYNv9v5SGlFKUaBVLMmgWR0Cmn+dDpkf+dX2UKGgGaAloD0MIt9Jrs7GS87+UhpRSlGgVSzJoFkdApqIe8TSLInV9lChoBmgJaA9DCHREvkupi/i/lIaUUpRoFUsyaBZHQKah3kZJkG11fZQoaAZoCWgPQwgrTyDsFKvzv5SGlFKUaBVLMmgWR0CmoaGDUVi4dX2UKGgGaAloD0MIDJOpglEJ/L+UhpRSlGgVSzJoFkdApqFlKbrkbXV9lChoBmgJaA9DCIOluoCXmfe/lIaUUpRoFUsyaBZHQKajvGhEjPh1fZQoaAZoCWgPQwjvqDEh5lL+v5SGlFKUaBVLMmgWR0Cmo3tWuHN5dX2UKGgGaAloD0MItMnhk07k/L+UhpRSlGgVSzJoFkdApqM+i+L3sXV9lChoBmgJaA9DCMCWV663jQDAlIaUUpRoFUsyaBZHQKajAkPczqN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (720 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.0352549960371107, "std_reward": 0.6397368575022976, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-03T14:54:38.817970"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8803472df9db48109f1729d0305199e1d1ca5d5dc9bae3e83d1307ad184aa13d
3
+ size 3056