parthiv11 commited on
Commit
83982d7
1 Parent(s): ce82e74

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +35 -177
README.md CHANGED
@@ -15,201 +15,59 @@ model-index:
15
  - type: wer
16
  value: 8.1
17
  name: WER
 
 
 
 
 
 
18
  ---
 
19
 
20
- # Model Card for Model ID
21
 
22
- <!-- Provide a quick summary of what the model is/does. -->
23
 
 
24
 
 
25
 
26
- ## Model Details
27
 
28
- ### Model Description
29
 
30
- <!-- Provide a longer summary of what this model is. -->
31
 
 
32
 
 
33
 
34
- - **Developed by:** [More Information Needed]
35
- - **Funded by [optional]:** [More Information Needed]
36
- - **Shared by [optional]:** [More Information Needed]
37
- - **Model type:** [More Information Needed]
38
- - **Language(s) (NLP):** [More Information Needed]
39
- - **License:** [More Information Needed]
40
- - **Finetuned from model [optional]:** [More Information Needed]
41
 
42
- ### Model Sources [optional]
43
 
44
- <!-- Provide the basic links for the model. -->
45
 
46
- - **Repository:** [More Information Needed]
47
- - **Paper [optional]:** [More Information Needed]
48
- - **Demo [optional]:** [More Information Needed]
 
49
 
50
- ## Uses
51
 
52
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
53
 
54
- ### Direct Use
 
 
55
 
56
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
57
 
58
- [More Information Needed]
59
-
60
- ### Downstream Use [optional]
61
-
62
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
63
-
64
- [More Information Needed]
65
-
66
- ### Out-of-Scope Use
67
-
68
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
69
-
70
- [More Information Needed]
71
-
72
- ## Bias, Risks, and Limitations
73
-
74
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
75
-
76
- [More Information Needed]
77
-
78
- ### Recommendations
79
-
80
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
81
-
82
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
83
-
84
- ## How to Get Started with the Model
85
-
86
- Use the code below to get started with the model.
87
-
88
- [More Information Needed]
89
-
90
- ## Training Details
91
-
92
- ### Training Data
93
-
94
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
95
-
96
- [More Information Needed]
97
-
98
- ### Training Procedure
99
-
100
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
101
-
102
- #### Preprocessing [optional]
103
-
104
- [More Information Needed]
105
-
106
-
107
- #### Training Hyperparameters
108
-
109
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
110
-
111
- #### Speeds, Sizes, Times [optional]
112
-
113
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
114
-
115
- [More Information Needed]
116
-
117
- ## Evaluation
118
-
119
- <!-- This section describes the evaluation protocols and provides the results. -->
120
-
121
- ### Testing Data, Factors & Metrics
122
-
123
- #### Testing Data
124
-
125
- <!-- This should link to a Dataset Card if possible. -->
126
-
127
- [More Information Needed]
128
-
129
- #### Factors
130
-
131
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
132
-
133
- [More Information Needed]
134
-
135
- #### Metrics
136
-
137
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
138
-
139
- [More Information Needed]
140
-
141
- ### Results
142
-
143
- [More Information Needed]
144
-
145
- #### Summary
146
-
147
-
148
-
149
- ## Model Examination [optional]
150
-
151
- <!-- Relevant interpretability work for the model goes here -->
152
-
153
- [More Information Needed]
154
-
155
- ## Environmental Impact
156
-
157
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
158
-
159
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
160
-
161
- - **Hardware Type:** [More Information Needed]
162
- - **Hours used:** [More Information Needed]
163
- - **Cloud Provider:** [More Information Needed]
164
- - **Compute Region:** [More Information Needed]
165
- - **Carbon Emitted:** [More Information Needed]
166
-
167
- ## Technical Specifications [optional]
168
-
169
- ### Model Architecture and Objective
170
-
171
- [More Information Needed]
172
-
173
- ### Compute Infrastructure
174
-
175
- [More Information Needed]
176
-
177
- #### Hardware
178
-
179
- [More Information Needed]
180
-
181
- #### Software
182
-
183
- [More Information Needed]
184
-
185
- ## Citation [optional]
186
-
187
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
188
-
189
- **BibTeX:**
190
-
191
- [More Information Needed]
192
-
193
- **APA:**
194
-
195
- [More Information Needed]
196
-
197
- ## Glossary [optional]
198
-
199
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
200
-
201
- [More Information Needed]
202
-
203
- ## More Information [optional]
204
-
205
- [More Information Needed]
206
-
207
- ## Model Card Authors [optional]
208
-
209
- [More Information Needed]
210
-
211
- ## Model Card Contact
212
-
213
- [More Information Needed]
214
 
 
 
215
 
 
 
 
15
  - type: wer
16
  value: 8.1
17
  name: WER
18
+ language:
19
+ - hi
20
+ metrics:
21
+ - wer
22
+ library_name: nemo
23
+ pipeline_tag: automatic-speech-recognition
24
  ---
25
+ ## Model Overview
26
 
27
+ This collection contains large size versions of Conformer-CTC (around 120M parameters) trained on ULCA & Europal with around ~2900 hours. The model transcribes speech in Hindi characters along with spaces for Hinglish speech.
28
 
29
+ ## Model Architecture
30
 
31
+ Conformer-CTC model is a non-autoregressive variant of Conformer model for Automatic Speech Recognition which uses CTC loss/decoding instead of Transducer. You may find more info on the detail of this model [here](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html).
32
 
33
+ ## Training
34
 
35
+ The NeMo toolkit [3] was used for training the models for over several hundred epochs. These model are trained with [this example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/speech_to_text_bpe.py) and [this base config](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/conformer/conformer_ctc_bpe.yaml).
36
 
37
+ The tokenizers for these models were built using the text transcripts of the train set with [this script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py).
38
 
39
+ The checkpoint of the language model used as the neural rescorer.
40
 
41
+ ### Datasets
42
 
43
+ All the models in this collection are trained on Hindi labelled dataset (~2900 hrs):
44
 
45
+ - ULCA Hindi Corpus
46
+ - Europal Dataset
 
 
 
 
 
47
 
48
+ ## Performance
49
 
50
+ The list of the available models in this collection is shown in the following table. Performances of the ASR models are reported in terms of Word Error Rate (WER%) with greedy decoding and 6-Gram KenLM trained on AI4Bharat Corpus and Europal.
51
 
52
+ | Decoding | Version | Tokenizer | Vocabulary Size | MUCS 2021 Blind Test* | IITM 2020 Eval Set | IITM 2020 Dev Set | Common Voice 6 Test* | Common Voice 7 Test* | Common Voice 8 Test* |
53
+ |-----------------|---------|---------------------|-----------------|------------------------|--------------------|-------------------|----------------------|----------------------|----------------------|
54
+ | Greedy | 1.10.0 | SentencePiece Unigram | 128 | 9.37%/2.74% | 12.93%/5.60% | 12.63%/5.49% | 13.16%/4.5% | 13.5%/5.2% | 14.37%/5.95% |
55
+ | 6-Gram KenLM** | 1.10.0 | SentencePiece Unigram | 128 | 11.79%/3.35% | 15.96%/6.39% | 15.49%/6.25% | 17.05%/5.43% | 17.77%/6.23% | 19.18%/7.1% |
56
 
57
+ *- Normalized and without special characters and punctuation.
58
 
59
+ **- KenLM with 128 beam size with n_gram_alpha=1.0, n_gram_beta=1.0.
60
 
61
+ ## How to Use this Model
62
+ - Can also be used from NGC, intrution [here](https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_hi_conformer_ctc_large).
63
+ - Follow [colab](https://colab.research.google.com/drive/1mLWVCbe4JFnooDoQLG0_33Je0LXdCZjO?usp=sharing) to use it directly
64
 
 
65
 
66
+ ### Input
67
+ This model accepts 16000 KHz Mono-channel Audio (wav files) as input.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
 
69
+ ### Output
70
+ This model provides transcribed speech as a string for a given audio sample.
71
 
72
+ ### Licence (Credit goes to Nvidia)
73
+ License to use this model is covered by the [NGC TERMS OF USE](https://ngc.nvidia.com/legal/terms) unless another License/Terms Of Use/EULA is clearly specified. By downloading the public and release version of the model, you accept the terms and conditions of the [NGC TERMS OF USE](https://ngc.nvidia.com/legal/terms).