End of training
Browse files- README.md +82 -0
- logs/events.out.tfevents.1735326415.DESKTOP-CP49C74.10700.0 +2 -2
- model.safetensors +1 -1
- preprocessor_config.json +13 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +81 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: microsoft/layoutlm-base-uncased
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- funsd
|
9 |
+
model-index:
|
10 |
+
- name: layoutlm-funsd
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# layoutlm-funsd
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.6795
|
22 |
+
- Answer: {'precision': 0.7247807017543859, 'recall': 0.8170580964153276, 'f1': 0.768158047646717, 'number': 809}
|
23 |
+
- Header: {'precision': 0.3208955223880597, 'recall': 0.36134453781512604, 'f1': 0.33992094861660077, 'number': 119}
|
24 |
+
- Question: {'precision': 0.7793721973094171, 'recall': 0.815962441314554, 'f1': 0.7972477064220184, 'number': 1065}
|
25 |
+
- Overall Precision: 0.7279
|
26 |
+
- Overall Recall: 0.7893
|
27 |
+
- Overall F1: 0.7573
|
28 |
+
- Overall Accuracy: 0.8097
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 3e-05
|
48 |
+
- train_batch_size: 16
|
49 |
+
- eval_batch_size: 8
|
50 |
+
- seed: 42
|
51 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- num_epochs: 15
|
54 |
+
- mixed_precision_training: Native AMP
|
55 |
+
|
56 |
+
### Training results
|
57 |
+
|
58 |
+
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
59 |
+
|:-------------:|:-----:|:----:|:---------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
60 |
+
| 1.7157 | 1.0 | 10 | 1.4996 | {'precision': 0.07431693989071038, 'recall': 0.08405438813349815, 'f1': 0.0788863109048724, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.22849213691026826, 'recall': 0.231924882629108, 'f1': 0.23019571295433364, 'number': 1065} | 0.1578 | 0.1581 | 0.1579 | 0.4464 |
|
61 |
+
| 1.3388 | 2.0 | 20 | 1.1680 | {'precision': 0.2980891719745223, 'recall': 0.2892459826946848, 'f1': 0.2936010037641154, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.49192245557350567, 'recall': 0.571830985915493, 'f1': 0.5288753799392097, 'number': 1065} | 0.4167 | 0.4230 | 0.4198 | 0.6170 |
|
62 |
+
| 1.0157 | 3.0 | 30 | 0.8917 | {'precision': 0.5579302587176603, 'recall': 0.6131025957972805, 'f1': 0.5842167255594817, 'number': 809} | {'precision': 0.13513513513513514, 'recall': 0.04201680672268908, 'f1': 0.06410256410256411, 'number': 119} | {'precision': 0.5931528662420382, 'recall': 0.6995305164319249, 'f1': 0.6419646704006894, 'number': 1065} | 0.5710 | 0.6252 | 0.5969 | 0.7325 |
|
63 |
+
| 0.7726 | 4.0 | 40 | 0.7448 | {'precision': 0.6359875904860393, 'recall': 0.7601977750309024, 'f1': 0.6925675675675675, 'number': 809} | {'precision': 0.29850746268656714, 'recall': 0.16806722689075632, 'f1': 0.21505376344086022, 'number': 119} | {'precision': 0.691696113074205, 'recall': 0.7352112676056338, 'f1': 0.7127901684114702, 'number': 1065} | 0.6547 | 0.7115 | 0.6819 | 0.7725 |
|
64 |
+
| 0.6355 | 5.0 | 50 | 0.6844 | {'precision': 0.6714129244249726, 'recall': 0.757725587144623, 'f1': 0.7119628339140535, 'number': 809} | {'precision': 0.3170731707317073, 'recall': 0.2184873949579832, 'f1': 0.25870646766169153, 'number': 119} | {'precision': 0.705, 'recall': 0.7943661971830986, 'f1': 0.7470198675496689, 'number': 1065} | 0.6765 | 0.7451 | 0.7092 | 0.7944 |
|
65 |
+
| 0.5353 | 6.0 | 60 | 0.6699 | {'precision': 0.6676860346585117, 'recall': 0.8096415327564895, 'f1': 0.7318435754189945, 'number': 809} | {'precision': 0.3068181818181818, 'recall': 0.226890756302521, 'f1': 0.2608695652173913, 'number': 119} | {'precision': 0.7171717171717171, 'recall': 0.8, 'f1': 0.7563249001331558, 'number': 1065} | 0.6797 | 0.7697 | 0.7219 | 0.7951 |
|
66 |
+
| 0.4614 | 7.0 | 70 | 0.6517 | {'precision': 0.7006507592190889, 'recall': 0.7985166872682324, 'f1': 0.7463893703061815, 'number': 809} | {'precision': 0.26495726495726496, 'recall': 0.2605042016806723, 'f1': 0.2627118644067797, 'number': 119} | {'precision': 0.7355442176870748, 'recall': 0.812206572769953, 'f1': 0.7719767960731816, 'number': 1065} | 0.6962 | 0.7737 | 0.7329 | 0.8045 |
|
67 |
+
| 0.4076 | 8.0 | 80 | 0.6567 | {'precision': 0.7194719471947195, 'recall': 0.8084054388133498, 'f1': 0.761350407450524, 'number': 809} | {'precision': 0.2713178294573643, 'recall': 0.29411764705882354, 'f1': 0.28225806451612906, 'number': 119} | {'precision': 0.7508561643835616, 'recall': 0.8234741784037559, 'f1': 0.7854903716972683, 'number': 1065} | 0.7099 | 0.7858 | 0.7459 | 0.8056 |
|
68 |
+
| 0.3664 | 9.0 | 90 | 0.6529 | {'precision': 0.7176724137931034, 'recall': 0.823238566131026, 'f1': 0.7668393782383419, 'number': 809} | {'precision': 0.265625, 'recall': 0.2857142857142857, 'f1': 0.27530364372469635, 'number': 119} | {'precision': 0.7686768676867687, 'recall': 0.8018779342723005, 'f1': 0.7849264705882354, 'number': 1065} | 0.7171 | 0.7797 | 0.7471 | 0.8098 |
|
69 |
+
| 0.3515 | 10.0 | 100 | 0.6537 | {'precision': 0.7129032258064516, 'recall': 0.8195302843016069, 'f1': 0.7625071880391028, 'number': 809} | {'precision': 0.32075471698113206, 'recall': 0.2857142857142857, 'f1': 0.30222222222222217, 'number': 119} | {'precision': 0.7788632326820604, 'recall': 0.8234741784037559, 'f1': 0.8005476951163851, 'number': 1065} | 0.7280 | 0.7898 | 0.7576 | 0.8157 |
|
70 |
+
| 0.3077 | 11.0 | 110 | 0.6694 | {'precision': 0.7241379310344828, 'recall': 0.8046971569839307, 'f1': 0.7622950819672132, 'number': 809} | {'precision': 0.302158273381295, 'recall': 0.35294117647058826, 'f1': 0.3255813953488373, 'number': 119} | {'precision': 0.7599653379549394, 'recall': 0.8234741784037559, 'f1': 0.790446146913024, 'number': 1065} | 0.7162 | 0.7878 | 0.7503 | 0.8078 |
|
71 |
+
| 0.2941 | 12.0 | 120 | 0.6687 | {'precision': 0.7135076252723311, 'recall': 0.8096415327564895, 'f1': 0.7585408222350897, 'number': 809} | {'precision': 0.3053435114503817, 'recall': 0.33613445378151263, 'f1': 0.32000000000000006, 'number': 119} | {'precision': 0.7793721973094171, 'recall': 0.815962441314554, 'f1': 0.7972477064220184, 'number': 1065} | 0.7227 | 0.7847 | 0.7525 | 0.8118 |
|
72 |
+
| 0.2726 | 13.0 | 130 | 0.6769 | {'precision': 0.720348204570185, 'recall': 0.8182941903584673, 'f1': 0.7662037037037037, 'number': 809} | {'precision': 0.33064516129032256, 'recall': 0.3445378151260504, 'f1': 0.33744855967078186, 'number': 119} | {'precision': 0.7713280562884784, 'recall': 0.8234741784037559, 'f1': 0.7965485921889193, 'number': 1065} | 0.7248 | 0.7928 | 0.7572 | 0.8095 |
|
73 |
+
| 0.2575 | 14.0 | 140 | 0.6821 | {'precision': 0.7238723872387238, 'recall': 0.8133498145859085, 'f1': 0.7660069848661233, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.3697478991596639, 'f1': 0.350597609561753, 'number': 119} | {'precision': 0.7810545129579982, 'recall': 0.8206572769953052, 'f1': 0.8003663003663004, 'number': 1065} | 0.7296 | 0.7908 | 0.7590 | 0.8095 |
|
74 |
+
| 0.2563 | 15.0 | 150 | 0.6795 | {'precision': 0.7247807017543859, 'recall': 0.8170580964153276, 'f1': 0.768158047646717, 'number': 809} | {'precision': 0.3208955223880597, 'recall': 0.36134453781512604, 'f1': 0.33992094861660077, 'number': 119} | {'precision': 0.7793721973094171, 'recall': 0.815962441314554, 'f1': 0.7972477064220184, 'number': 1065} | 0.7279 | 0.7893 | 0.7573 | 0.8097 |
|
75 |
+
|
76 |
+
|
77 |
+
### Framework versions
|
78 |
+
|
79 |
+
- Transformers 4.47.0
|
80 |
+
- Pytorch 2.5.1+cpu
|
81 |
+
- Datasets 3.2.0
|
82 |
+
- Tokenizers 0.21.0
|
logs/events.out.tfevents.1735326415.DESKTOP-CP49C74.10700.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5fdc75806d470982ed5d0d34e6fe97267804fd05ce6e846fd976ed3da991e0cd
|
3 |
+
size 16219
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 450558212
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9098a5c50d694a2a4742a679561bb2d9ce1cf9d97983341069f1484139ab9356
|
3 |
size 450558212
|
preprocessor_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"apply_ocr": true,
|
3 |
+
"do_resize": true,
|
4 |
+
"image_processor_type": "LayoutLMv2ImageProcessor",
|
5 |
+
"ocr_lang": null,
|
6 |
+
"processor_class": "LayoutLMv2Processor",
|
7 |
+
"resample": 2,
|
8 |
+
"size": {
|
9 |
+
"height": 224,
|
10 |
+
"width": 224
|
11 |
+
},
|
12 |
+
"tesseract_config": ""
|
13 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"additional_special_tokens": [],
|
45 |
+
"apply_ocr": false,
|
46 |
+
"clean_up_tokenization_spaces": false,
|
47 |
+
"cls_token": "[CLS]",
|
48 |
+
"cls_token_box": [
|
49 |
+
0,
|
50 |
+
0,
|
51 |
+
0,
|
52 |
+
0
|
53 |
+
],
|
54 |
+
"do_basic_tokenize": true,
|
55 |
+
"do_lower_case": true,
|
56 |
+
"extra_special_tokens": {},
|
57 |
+
"mask_token": "[MASK]",
|
58 |
+
"model_max_length": 512,
|
59 |
+
"never_split": null,
|
60 |
+
"only_label_first_subword": true,
|
61 |
+
"pad_token": "[PAD]",
|
62 |
+
"pad_token_box": [
|
63 |
+
0,
|
64 |
+
0,
|
65 |
+
0,
|
66 |
+
0
|
67 |
+
],
|
68 |
+
"pad_token_label": -100,
|
69 |
+
"processor_class": "LayoutLMv2Processor",
|
70 |
+
"sep_token": "[SEP]",
|
71 |
+
"sep_token_box": [
|
72 |
+
1000,
|
73 |
+
1000,
|
74 |
+
1000,
|
75 |
+
1000
|
76 |
+
],
|
77 |
+
"strip_accents": null,
|
78 |
+
"tokenize_chinese_chars": true,
|
79 |
+
"tokenizer_class": "LayoutLMv2Tokenizer",
|
80 |
+
"unk_token": "[UNK]"
|
81 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|