parthesh111 commited on
Commit
4609f98
·
verified ·
1 Parent(s): 56c4db6

End of training

Browse files
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: microsoft/layoutlm-base-uncased
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - funsd
9
+ model-index:
10
+ - name: layoutlm-funsd
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # layoutlm-funsd
18
+
19
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.6795
22
+ - Answer: {'precision': 0.7247807017543859, 'recall': 0.8170580964153276, 'f1': 0.768158047646717, 'number': 809}
23
+ - Header: {'precision': 0.3208955223880597, 'recall': 0.36134453781512604, 'f1': 0.33992094861660077, 'number': 119}
24
+ - Question: {'precision': 0.7793721973094171, 'recall': 0.815962441314554, 'f1': 0.7972477064220184, 'number': 1065}
25
+ - Overall Precision: 0.7279
26
+ - Overall Recall: 0.7893
27
+ - Overall F1: 0.7573
28
+ - Overall Accuracy: 0.8097
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 3e-05
48
+ - train_batch_size: 16
49
+ - eval_batch_size: 8
50
+ - seed: 42
51
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 15
54
+ - mixed_precision_training: Native AMP
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
59
+ |:-------------:|:-----:|:----:|:---------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
60
+ | 1.7157 | 1.0 | 10 | 1.4996 | {'precision': 0.07431693989071038, 'recall': 0.08405438813349815, 'f1': 0.0788863109048724, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.22849213691026826, 'recall': 0.231924882629108, 'f1': 0.23019571295433364, 'number': 1065} | 0.1578 | 0.1581 | 0.1579 | 0.4464 |
61
+ | 1.3388 | 2.0 | 20 | 1.1680 | {'precision': 0.2980891719745223, 'recall': 0.2892459826946848, 'f1': 0.2936010037641154, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.49192245557350567, 'recall': 0.571830985915493, 'f1': 0.5288753799392097, 'number': 1065} | 0.4167 | 0.4230 | 0.4198 | 0.6170 |
62
+ | 1.0157 | 3.0 | 30 | 0.8917 | {'precision': 0.5579302587176603, 'recall': 0.6131025957972805, 'f1': 0.5842167255594817, 'number': 809} | {'precision': 0.13513513513513514, 'recall': 0.04201680672268908, 'f1': 0.06410256410256411, 'number': 119} | {'precision': 0.5931528662420382, 'recall': 0.6995305164319249, 'f1': 0.6419646704006894, 'number': 1065} | 0.5710 | 0.6252 | 0.5969 | 0.7325 |
63
+ | 0.7726 | 4.0 | 40 | 0.7448 | {'precision': 0.6359875904860393, 'recall': 0.7601977750309024, 'f1': 0.6925675675675675, 'number': 809} | {'precision': 0.29850746268656714, 'recall': 0.16806722689075632, 'f1': 0.21505376344086022, 'number': 119} | {'precision': 0.691696113074205, 'recall': 0.7352112676056338, 'f1': 0.7127901684114702, 'number': 1065} | 0.6547 | 0.7115 | 0.6819 | 0.7725 |
64
+ | 0.6355 | 5.0 | 50 | 0.6844 | {'precision': 0.6714129244249726, 'recall': 0.757725587144623, 'f1': 0.7119628339140535, 'number': 809} | {'precision': 0.3170731707317073, 'recall': 0.2184873949579832, 'f1': 0.25870646766169153, 'number': 119} | {'precision': 0.705, 'recall': 0.7943661971830986, 'f1': 0.7470198675496689, 'number': 1065} | 0.6765 | 0.7451 | 0.7092 | 0.7944 |
65
+ | 0.5353 | 6.0 | 60 | 0.6699 | {'precision': 0.6676860346585117, 'recall': 0.8096415327564895, 'f1': 0.7318435754189945, 'number': 809} | {'precision': 0.3068181818181818, 'recall': 0.226890756302521, 'f1': 0.2608695652173913, 'number': 119} | {'precision': 0.7171717171717171, 'recall': 0.8, 'f1': 0.7563249001331558, 'number': 1065} | 0.6797 | 0.7697 | 0.7219 | 0.7951 |
66
+ | 0.4614 | 7.0 | 70 | 0.6517 | {'precision': 0.7006507592190889, 'recall': 0.7985166872682324, 'f1': 0.7463893703061815, 'number': 809} | {'precision': 0.26495726495726496, 'recall': 0.2605042016806723, 'f1': 0.2627118644067797, 'number': 119} | {'precision': 0.7355442176870748, 'recall': 0.812206572769953, 'f1': 0.7719767960731816, 'number': 1065} | 0.6962 | 0.7737 | 0.7329 | 0.8045 |
67
+ | 0.4076 | 8.0 | 80 | 0.6567 | {'precision': 0.7194719471947195, 'recall': 0.8084054388133498, 'f1': 0.761350407450524, 'number': 809} | {'precision': 0.2713178294573643, 'recall': 0.29411764705882354, 'f1': 0.28225806451612906, 'number': 119} | {'precision': 0.7508561643835616, 'recall': 0.8234741784037559, 'f1': 0.7854903716972683, 'number': 1065} | 0.7099 | 0.7858 | 0.7459 | 0.8056 |
68
+ | 0.3664 | 9.0 | 90 | 0.6529 | {'precision': 0.7176724137931034, 'recall': 0.823238566131026, 'f1': 0.7668393782383419, 'number': 809} | {'precision': 0.265625, 'recall': 0.2857142857142857, 'f1': 0.27530364372469635, 'number': 119} | {'precision': 0.7686768676867687, 'recall': 0.8018779342723005, 'f1': 0.7849264705882354, 'number': 1065} | 0.7171 | 0.7797 | 0.7471 | 0.8098 |
69
+ | 0.3515 | 10.0 | 100 | 0.6537 | {'precision': 0.7129032258064516, 'recall': 0.8195302843016069, 'f1': 0.7625071880391028, 'number': 809} | {'precision': 0.32075471698113206, 'recall': 0.2857142857142857, 'f1': 0.30222222222222217, 'number': 119} | {'precision': 0.7788632326820604, 'recall': 0.8234741784037559, 'f1': 0.8005476951163851, 'number': 1065} | 0.7280 | 0.7898 | 0.7576 | 0.8157 |
70
+ | 0.3077 | 11.0 | 110 | 0.6694 | {'precision': 0.7241379310344828, 'recall': 0.8046971569839307, 'f1': 0.7622950819672132, 'number': 809} | {'precision': 0.302158273381295, 'recall': 0.35294117647058826, 'f1': 0.3255813953488373, 'number': 119} | {'precision': 0.7599653379549394, 'recall': 0.8234741784037559, 'f1': 0.790446146913024, 'number': 1065} | 0.7162 | 0.7878 | 0.7503 | 0.8078 |
71
+ | 0.2941 | 12.0 | 120 | 0.6687 | {'precision': 0.7135076252723311, 'recall': 0.8096415327564895, 'f1': 0.7585408222350897, 'number': 809} | {'precision': 0.3053435114503817, 'recall': 0.33613445378151263, 'f1': 0.32000000000000006, 'number': 119} | {'precision': 0.7793721973094171, 'recall': 0.815962441314554, 'f1': 0.7972477064220184, 'number': 1065} | 0.7227 | 0.7847 | 0.7525 | 0.8118 |
72
+ | 0.2726 | 13.0 | 130 | 0.6769 | {'precision': 0.720348204570185, 'recall': 0.8182941903584673, 'f1': 0.7662037037037037, 'number': 809} | {'precision': 0.33064516129032256, 'recall': 0.3445378151260504, 'f1': 0.33744855967078186, 'number': 119} | {'precision': 0.7713280562884784, 'recall': 0.8234741784037559, 'f1': 0.7965485921889193, 'number': 1065} | 0.7248 | 0.7928 | 0.7572 | 0.8095 |
73
+ | 0.2575 | 14.0 | 140 | 0.6821 | {'precision': 0.7238723872387238, 'recall': 0.8133498145859085, 'f1': 0.7660069848661233, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.3697478991596639, 'f1': 0.350597609561753, 'number': 119} | {'precision': 0.7810545129579982, 'recall': 0.8206572769953052, 'f1': 0.8003663003663004, 'number': 1065} | 0.7296 | 0.7908 | 0.7590 | 0.8095 |
74
+ | 0.2563 | 15.0 | 150 | 0.6795 | {'precision': 0.7247807017543859, 'recall': 0.8170580964153276, 'f1': 0.768158047646717, 'number': 809} | {'precision': 0.3208955223880597, 'recall': 0.36134453781512604, 'f1': 0.33992094861660077, 'number': 119} | {'precision': 0.7793721973094171, 'recall': 0.815962441314554, 'f1': 0.7972477064220184, 'number': 1065} | 0.7279 | 0.7893 | 0.7573 | 0.8097 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.47.0
80
+ - Pytorch 2.5.1+cpu
81
+ - Datasets 3.2.0
82
+ - Tokenizers 0.21.0
logs/events.out.tfevents.1735326415.DESKTOP-CP49C74.10700.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bb27035c92976f99bb68e137fd663c13512e4bc1395f7fcb9da4d235f46d3265
3
- size 15150
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5fdc75806d470982ed5d0d34e6fe97267804fd05ce6e846fd976ed3da991e0cd
3
+ size 16219
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:71d6b952cfffd8449c0f79c4fa1bb44a121f6868521dd2594057d443ebc41936
3
  size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9098a5c50d694a2a4742a679561bb2d9ce1cf9d97983341069f1484139ab9356
3
  size 450558212
preprocessor_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_resize": true,
4
+ "image_processor_type": "LayoutLMv2ImageProcessor",
5
+ "ocr_lang": null,
6
+ "processor_class": "LayoutLMv2Processor",
7
+ "resample": 2,
8
+ "size": {
9
+ "height": 224,
10
+ "width": 224
11
+ },
12
+ "tesseract_config": ""
13
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": false,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "extra_special_tokens": {},
57
+ "mask_token": "[MASK]",
58
+ "model_max_length": 512,
59
+ "never_split": null,
60
+ "only_label_first_subword": true,
61
+ "pad_token": "[PAD]",
62
+ "pad_token_box": [
63
+ 0,
64
+ 0,
65
+ 0,
66
+ 0
67
+ ],
68
+ "pad_token_label": -100,
69
+ "processor_class": "LayoutLMv2Processor",
70
+ "sep_token": "[SEP]",
71
+ "sep_token_box": [
72
+ 1000,
73
+ 1000,
74
+ 1000,
75
+ 1000
76
+ ],
77
+ "strip_accents": null,
78
+ "tokenize_chinese_chars": true,
79
+ "tokenizer_class": "LayoutLMv2Tokenizer",
80
+ "unk_token": "[UNK]"
81
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff